Clinical Presentation

The clavicle is the only bony connection between the upper arm—shoulder and the thorax. It is the most frequently broken bone in the human body. The clavicle is divided into thirds. Fractures of the middle third are the most common, accounting for 80% of cases. Many of these fractures are caused by direct blows or falls, including falls onto an outstretched hand. Fractures of the lateral third account for 15% of cases. Generally, these types of fractures are caused by a direct impact injury at the top of the shoulder (Fig. 31.1). Fractures of the medial third account for 5% of cases and are usually caused by direct chest trauma. Patients with clavicle fractures complain of marked pain, particularly with movement; swelling and bruising; and tenderness.

The clinician should evaluate clavicle fractures, especially those involving the medial and middle thirds, for any associated thoracic and cervical injuries. It is essential to treat any associated cervical injury as an unstable acute spinal cord injury until it is proven otherwise. Stabilization of the patient on a spine board and in a hard cervical collar is necessary until a cervical injury is excluded by radiographs and a computed tomography scan. Thorough examination of the patient’s neurovascular status (associated compartment syndrome, cold cyanotic limb with decreased or absent pulses), with careful documentation, is necessary.

It is important to examine the acromioclavicular (AC) joint and the upper humerus for any evidence of associated swelling and ecchymosis. Lateral clavicular fractures may be associated with AC joint separations or upper humeral fractures. It is necessary to palpate the humeral head and neck (Fig. 31.2). In the AC joint, there may be a nondisplaced fracture, a grade 1 joint separation, or a step-off deformity with possible fracture displacement. In addition, the clinician should inspect the shoulder girdle for any acute dislocations. In addition, the clinician be on the alert for several associated conditions.

It is necessary to strongly consider a thorough chest examination with rib films if there is accompanying chest wall trauma. Radiographs show an effacement of the vascular tree. Sometimes with smaller pneumothoraces (<10%), the effacement may hide in the apical portions of the lungs. This is easy to miss (Fig. 31.3).

The examiner should also check for any focal chest wall tenderness associated with absent breath sounds (and hyperresonance to percussion), which is suspicious for an associated pneumothorax. Patients with an effusion have shortness of breath, dullness at the bases (if they are able to sit up), and absent
breath sounds. Radiographs show blunting of the affected diaphragm(s). The normally sharp costophrenic angle is effaced with an effusion. A pneumothorax may occur with or without an associated chondral (rib) or clavicular fracture. A tension pneumothorax is rare, but it is characterized by an acute pneumothorax that is associated with tracheal deviation. The ruptured lung operates like a one-way valve. It allows air to accumulate in the pleural space (between the pleural lining and the collapsed lung) during inspiration. As the pressure in the pleural cavity increases, it can cause deviation of the trachea and move the cardiac structures to the opposite side. Decompression with chest tube placement must be performed immediately.
Although cardiac tamponade is a rare complication, the clinician should suspect it in any patient who presents with jugular venous distention, diminished heart sounds, and hypotension. An emergency pericardiocentesis is a life-saving procedure. Aortic injuries (transections) may cause a widening of the mediastinum on a posteroanterior (PA) or anteroposterior (AP) radiograph. Many of the radiographs taken in the emergency setting on unstable patients are portable AP projections that normally may show slight enlargement of the cardiac structures.

Radiographic Evaluation

The clinician should obtain standard radiographs of the shoulder and AP views of the clavicle in external and internal rotation. Clavicle fractures are usually evident on standard views. In addition, he or she may order optional radiographs, including:

- "Y" view: recommended for suspected acute shoulder trauma. It substitutes for the lateral view and is very useful for detecting anterior (95% of cases) and posterior (<5% of cases) shoulder dislocations.
- Angled frontal view: not commonly used by primary care physicians. This projection is angled 15 degrees above the clavicle and is used to identify fractures of the middle third of the clavicle.

Displaced fractures of the middle third of the clavicle are usually characterized by a cephalic ("upward") displacement of the proximal fragment. The distal fragment is pulled inferiorly by the unopposed pectoralis major and the weight of the arm. The pectoralis major attaches to the coracoid process.

The Neer classification is used to evaluate fractures of the distal third of the clavicle.

- Type I: nondisplaced fracture of the distal clavicle. The coracoacromial ligament and the coracoclavicular ligaments are attached. The coracoclavicular ligament is made up of the conoid ligament and the trapezoid ligament; both these ligaments prevent displacement of the clavicle (Fig. 31.4).
- Type II fracture: displaced fracture. The medially placed conoid ligament is torn, and there is an associated cephalic (upward) displacement of the proximal fractured segment. However, the distal segment (which includes an intact AC joint) remains anchored by the intact trapezoid ligament and intact coracoacromial ligament (Fig. 31.5).
- Type III: displaced fracture that extends to the AC joint. However, the supporting coracoacromial and coracoclavicular ligaments remain attached. In patients with serious impact injuries to the upper thoracic region, chest radiographs and rib films (of the affected area) should be obtained as well (Fig. 31.6).
Treatment

The course of treatment typically depends on the type of fracture, because some fractures have a much better chance of healing without surgery than others. Most minor nondisplaced fractures are treated conservatively. The large majority of fractures of the middle third of the clavicle can usually be treated with immobilization, either with a sling or with a figure-of-eight bandage. There has, however, been no determination that immobilization for pain relief only using anything other than a sling is necessary. However, nonsteroidal anti-inflammatory drugs (NSAIDs) and ice applications may be used to relieve pain and reduce swelling. Fractures of the proximal third of the clavicle can also be treated nonoperatively with a sling, especially if the fracture is nondisplaced. It should be noted that neonatal and pediatric clavicle fractures typically respond to conservative treatment within a few weeks.

However, recent studies have suggested improved clinical outcomes with open reduction internal fixation (ORIF) of clavicle fractures. Operative treatment indications had traditionally been reserved for cases of open fractures, tenting of the skin, neurovascular injury, floating shoulder, and polytrauma. In addition, despite the propensity to heal, many fractures unite in a significantly shortened position (i.e., more than 2 cm of shortening), which can lead to significant biomechanical abnormalities about the shoulder and scapula with associated pain and dysfunction. Thus, a decision to use ORIF may still be made for clavicle fractures that have a propensity to heal in an overlapping position. The current recommendations for displaced clavicle fractures with greater than 2 cm of shortening is operative management with ORIF; recent studies have reported improved functional outcomes and lower rates of malunion and nonunion with operative management. Treatment of fractures of the distal third depends on the specific nature of the fracture. Distal type I and type III (articular facing) fractures may need only nonoperative treatment with a sling and immobilization. Distal type II fractures, which are inherently unstable, typically require surgery.

Surgical options involve use of an intramedullary cannulated threaded screw or open reduction of the fracture followed by plate fixation with a compression or locking plate. Anatomically precontoured...
Clavicle plates are available, and surgical use has been successful. During surgery, the surgeon must pay special attention to important nerves (brachial plexus) and vessels (subclavian artery). In the postoperative setting, NSAIDs and ice may also be useful.

Suggested Readings

