Establishing Clinically Significant Outcomes for PROMIS Following Biceps Tenodesis

Enrico M. Forlenza, BS, Yining Lu, MD, Matthew R. Cohn, MD, James Baker, BS, Ophelie Lavoie-Gagne, BS, Adam B. Yanke, MD, PhD, Brian J. Cole, MD, MBA, Nikhil N. Verma, MD, Brian Forsythe, MD

PII: S0749-8063(21)00010-4

DOI: https://doi.org/10.1016/j.arthro.2020.12.236

Reference: YJARS 57342

To appear in: Arthroscopy: The Journal of Arthroscopic and Related Surgery

Received Date: 5 June 2020

Revised Date: 28 December 2020

Accepted Date: 29 December 2020

Please cite this article as: Forlenza EM, Lu Y, Cohn MR, Baker J, Lavoie-Gagne O, Yanke AB, Cole BJ, Verma NN, Forsythe B, Establishing Clinically Significant Outcomes for PROMIS Following Biceps Tenodesis, *Arthroscopy: The Journal of Arthroscopic and Related Surgery* (2021), doi: https://doi.org/10.1016/j.arthro.2020.12.236.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier on behalf of the Arthroscopy Association of North America

Establishing Clinically Significant Outcomes for PROMIS Following Biceps Tenodesis Enrico M. Forlenza BS¹, Yining Lu MD¹, Matthew R. Cohn MD¹, James Baker BS¹, Ophelie Lavoie-Gagne BS¹, Adam B. Yanke MD, PhD¹, Brian J. Cole MD, MBA¹, Nikhil N. Verma MD¹, Brian Forsythe MD¹

¹Rush University Medical Center, 1611 W Harrison St, Chicago, IL, 60612

Corresponding Author: Brian Forsythe, MD

Email: <u>brian.forsythe@rushortho.com</u> Telephone: +1(617) 872-8499 Address: 1611 W Harrison St, Chicago, IL, 60612

Other authors:

Enrico M. Forlenza, BS: $\underline{emf103@georgetown.edu}$ ([†]1, 2, 3, 4) Yining Lu, MD: $\underline{ylu73@uic.edu}$ ([†]1, 2, 3, 4) Matthew R. Cohn, MD: $\underline{matthew.r.cohn@gmail.com}$ ([†]1, 2, 3, 4) James Baker, BS: <u>James_Baker@rush.edu</u> ([†]1, 2, 3, 4) Ophelie Lavoie-Gagne, BS: <u>olavoieg@health.ucsd.edu</u> ([†]1, 2, 3, 4) Adam B. Yanke, MD, PhD: <u>adam.yanke@rushortho.com</u> ([†]2, 3, 4) Brian J. Cole MD, MBA: <u>brian.cole@rushortho.com</u> ([†]2, 3, 4) Nikhil N. Verma, MD: <u>nikhil.verma@rushortho.com</u> ([†]2, 3, 4) Brian Forsythe, MD: <u>brian.forsythe@rushortho.com</u> ([†]2, 3, 4) **Acknowledgements**: none

[†]Denotes author participation using the ICMJE criteria for authorship:

1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND

2. Drafting the work or revising it critically for important intellectual content; AND

3. Final approval of the version to be published; AND

4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

1 Establishing Clinically Significant Outcomes for PROMIS Following Biceps Tenodesis

Journal Pression

2 ABSTRACT

3 Purpose:

To establish thresholds for improvement in patient-reported outcome scores that correspond with 4 5 clinically significant outcomes (CSOs) including the minimal clinically important difference 6 (MCID), substantial clinical benefit (SCB) and patient acceptable symptomatic state (PASS) for 7 Patient-Reported Outcomes Measurement Information System (PROMIS) Upper Extremity (UE) 8 Computer Adaptive Testing (CAT) and Pain Interference (PIF) CAT after biceps tenodesis (BT) 9 and to assess patient variables that are associated with achieving these outcomes. Methods: 10 After IRB approval, a prospectively maintained institutional database was queried for patients 11 undergoing BT between December 2017 and August 2019. Patients undergoing isolated biceps 12 tenodesis or biceps tenodesis in conjunction with rotator cuff debridement, superior labrum 13 anterior posterior (SLAP) repair, subacromial decompression or distal clavicle excision were 14 included in the analysis. Anchor-based and distribution-based methods were used to calculate the 15 MCID whereas an anchor-based method was used to calculate the SCB and PASS for PROMIS 16 UE CAT and PIF CAT. 17 **Results:** A total of 112 patients (86.8% follow-up) who underwent BT were included for analysis. The 18

MCID, net SCB, absolute SCB and PASS for PROMIS UE CAT were 4.02, 9.25, 43.4 and 41.1,

20 respectively. The MCID, net SCB, absolute SCB and PASS for PROMIS PIF CAT were -4.12, -

21 10.7, 52.4 and 52.4, respectively. Higher preoperative UE CAT and PIF CAT scores,

22 preoperative opioid use, depression, and living alone were negative predictors of CSO

23 achievement. Male gender and regular exercise were positive predictors of CSO achievement.

24 Conclusion:

- 25 Patients with higher preoperative UE scores were less likely to achieve MCID (OR: 0.84), while
- 26 patients with higher preoperative PIF scores were less likely to achieve absolute SCB and PASS
- 27 (OR: 0.83-0.89). The majority of patients achieved the MCID for PIF CAT (70.5%) and UE
- 28 CAT (62.5%) at final follow-up. Male gender (OR: 4.38-9.15) and regular exercise (OR: 6.45-
- 29 18.94) positively predicted CSO achievement while preoperative opioid use (OR: 0.06),
- 30 depression (OR: 0.23) and living alone (OR: 0.90) were negative predictors of CSO
- 31 achievement.
- 32 Level of evidence: IV, Case Series

Journal Prevent

33 INTRODUCTION

Biceps tenodesis is an increasingly common procedure used to treat pathology of the long 34 head of the biceps tendon (LHBT)^{1, 2}. The LHBT is implicated as a pain generator in a variety of 35 conditions including biceps tenosynovitis, biceps instability, and superior labrum anterior 36 posterior (SLAP) tears. While nonoperative management with activity modification, nonsteroidal 37 anti-inflammatories, physical therapy, and corticosteroid injections are first-line treatment 38 39 options, operative management is indicated in recalcitrant cases. Biceps tenodesis or tenotomy may be considered as surgical options, as both procedures produce reliable pain relief^{3, 4}. Biceps 40 tenodesis tends to be preferred in younger and active patients and has been associated with lower 41 rates of muscle cramping and cosmetic deformity⁴. Patients undergoing biceps tenodesis have 42 demonstrated high rates of good or excellent functional outcomes on a number of patient 43 reported outcome measures (PROMs) including American Shoulder and Elbow Surgeons 44 (ASES), Constant, and Oxford Shoulder scores³. 45

Orthopaedic surgery is increasingly moving towards a value-based care model which 46 places an emphasis on PROMs. However, traditional PROMs may be time consuming and 47 burdensome for patients⁵. To address this, the NIH developed the Patient-Reported Outcomes 48 Measurement Information System (PROMIS) as an instrument to efficiently collect PROMs⁵. 49 Based on principles of Item Response Theory, PROMIS is a smart form that utilizes Computer 50 Adaptive Testing (CAT) to tailor questions based on a participant's previous answers⁶. This 51 52 dynamic testing allows more precise estimation of outcomes while reducing the questionnaire burden^{6,7}. Specifically, the Upper Extremity (UE) CAT was developed to assess functional 53 outcomes of hand and upper extremity conditions, with higher scores indicating better functional 54 status, and the pain interference (PIF) assesses the degree to which pain limits a patient's 55

physical, mental, and social activities, with higher scores indicating greater pain levels^{8, 9}. As

56

5

PROMIS continues to grow in popularity as an outcome measure, it is important to establish 57 changes in scores that accurately reflect clinical improvement for patients. 58 While traditionally there has been a focus on statistical significance when assessing 59 changes in PROMs, the orthopedic community is increasingly recognizing the importance of 60 clinically significant outcome (CSO) values¹⁰. These quality measures may better reflect what a 61 patient perceives as a positive or negative outcome. Specifically, the minimal clinically 62 important difference (MCID), represents the smallest change in an outcome that the patient 63 considers important¹¹. The substantial clinical benefit (SCB) represents a change that the patient 64 perceives as substantial¹⁰. The patient acceptable symptomatic state (PASS) is the threshold at 65 which the patient is satisfied with his or her current health state. Two broad categories for 66 calculating CSOs include anchor-based and distribution-based methods¹². In the anchor-based 67 method, patient-reported outcomes are paired or 'anchored' to another subjective subscale; 68 changes in scores on the PROMs are compared with changes in the subjective subscale and are 69 then used to calculate CSOs¹². In the distribution-based approach, measures of variability in 70 PROM scores such as the standard deviation or effect size are used to represent a CSO¹². 71 The objective of this investigation was to establish thresholds for improvement in patient-72

reported outcome scores that correspond with clinically significant outcomes (CSOs) including the minimal clinically important difference (MCID), substantial clinical benefit (SCB) and patient acceptable symptomatic state (PASS) for Patient-Reported Outcomes Measurement Information System (PROMIS) Upper Extremity (UE) Computer Adaptive Testing (CAT) and Pain Interference (PIF) CAT after biceps tenodesis (BT) and to assess patient variables that are associated with achieving these outcomes. We hypothesized that the MCID, SCB and PASS

- could be reliably established utilizing anchor based and distribution-based methods, and that
- 80 patients with higher preoperative UE and PIF scores would be less likely to achieve these CSOs.
- 81

Journal Prevention

82 METHODS

83 Study Design and Methods

After IRB approval, patients undergoing biceps tenodesis at a single institution were 84 identified using a departmental registry between December 2017 and August 2019. Patients 85 86 received their care and evaluation by one of the four senior authors, all of which are fellowshiptrained orthopaedic sports medicine surgeons (ABY, BJC, NNV and BF). A retrospective review 87 88 of prospectively collected PROMs completed by patients using an electronic data collection 89 service (Outcome Based Electronic Research Database, Columbia, MO, USA) was conducted. 90 The 6-month time point was selected as the minimum follow-up for assessing clinically 91 significant outcomes (CSOs) as it has been identified as the point of maximal medical improvement for patients undergoing biceps tenodesis, after which no significant improvements 92 in post-operative PROMs are expected¹³⁻¹⁵. In fact, extending follow-up significantly beyond this 93 94 point allows for the introduction of other confounding variables such as additional injuries or life events that do not reflect the medical improvement after BT^{15} . 95

96 Patient selection

97 Patient medical records were reviewed retrospectively. Much of the existing literature on BT examines its outcomes when performed with more involved procedures such as rotator cuff 98 repair, which requires a longer recovery than BT^{15, 16}. Patients undergoing isolated biceps 99 100 tenodesis or biceps tenodesis in conjunction with rotator cuff debridement, superior labrum 101 anterior posterior (SLAP) repair, subacromial decompression or distal clavicle excision were 102 included in the analysis. Thus, in all cases, BT remained the rate limiting procedure with respect 103 to postoperative rehabilitation. Patients undergoing revision biceps tenodesis or biceps tenodesis in conjunction with rotator cuff repair or total shoulder arthroplasty were excluded¹⁵. In this 104

105	study, BT was performed concurrently with rotator cuff debridement, subacromial
106	decompression and distal clavicle excision. However, All included patients underwent previously
107	described surgical techniques of biceps tenodesis and corresponding rehabilitation protocols ^{15, 17,}
108	¹⁸ . Patients identified as lost to follow-up were compared to included patients to assess for any
109	selection bias in baseline demographics or outcome measures. Additional patient demographics,
110	including age, gender, body mass index (BMI), smoking status, living situation, and
111	comorbidities were collected from electronic medical records. Intraoperative variables were
112	described by the operating surgeons (ABY, BJC, NNV and BF) and documented by trained
113	research associates at the time of surgery.
114	
115	
116	Anchor questions
117	CSOs for PROMIS UE and PROMIS PIF were calculated via an anchor-based
118	methodology. To determine PASS, patients were asked to respond "yes" or "no" to the following
119	questions: "Taking into account all activities you have done during your daily life, your level of
120	pain, and also your functional impairment, do you consider that your current status is
121	satisfactory?" MCID and SCB were determined by responses to the following anchor questions:
122	"Since your surgery, has there been any change in the overall function of your shoulder?" and
123	"Since your surgery, has there been any change in the overall pain in your shoulder?". Patients
124	could select one of the 15 possible responses to this question as shown in Figure 1. Respondents
125	were categorized as experiencing no improvement, minimal improvement, or substantial
126	improvement.
127	Statistical analysis

128	MCID was calculated using both an anchor-based and a distribution-based method, which
129	has been reliably derived by calculating half of the standard deviation of all outcomes scores
130	within a study population ¹⁹⁻²⁴ . Receiver operating characteristic curves (ROC) and area under the
131	curve (AUC) analysis was performed to evaluate CSOs using the aforementioned anchor
132	questions and PROMIS scores. The ROC model reliability was acceptable if AUC was greater
133	than 0.7 and considered excellent if the AUC was greater than 0.8, values that have been
134	established and utilized in previous investigations ^{15, 25, 26} . SCB was calculated as both an absolute
135	score and a net change in score at final follow-up. Cutoff analysis to define significant outcomes
136	and threshold outcome scores in achieving clinically significant outcomes was performed
137	through application of the Youden index ²⁷ , balancing maximum sensitivity and specificity of
138	threshold values.
139	Both bivariate and multivariate logistic regression analysis was used to evaluate the
140	association of baseline patient factors with achievement of CSOs. Variables that were found to
141	be significant predictors on bivariate analysis were included in the final multivariate model, and
142	significant predictors were selected through stepwise backwards elimination. All statistical

analysis was performed using RStudio software version 1.2.5001 (Boston, MA).

144 **RESULTS**

145 Study population and demographics

Of the 129 patients identified as meeting the inclusion criteria, 112 patients (86.8%) 146 147 completed preoperative and postoperative PROMIS UE and PIF and were included in the 148 analysis. Seventeen patients were excluded from the study population because they did not complete pre or post-operative PROMs. The mean follow-up was 7.6 months (range 6.0-9.3 149 150 months). Patient demographics and comorbidities are reported in Table 1. Of the included 151 patients, 79.5% were <55 years of age, 67% were male, 36.6% had BMI between 25-29, and 152 66.1% reported regular exercise. Intraoperative findings are reported in Table 2. Tenosynovitis 153 represented the dominant biceps pathology identified at the time of surgery in 95.5% of patients. Biceps tenodesis was performed using an open, subjectoral approach in 92% of cases. Suture 154 155 anchors and interference screws were employed as fixation constructs in 45.5% and 54.5% of 156 cases, respectively.

157 Calculation of MCID, SCB and PASS

158 The MCID was determined using both anchor-based and distribution-based methods 159 (Table 3). The AUC of the MCID ROC analysis (0.52 and 0.56 for PIF and UE, respectively) 160 was inadequate; thus, calculation of MCID was completed using the distribution method as -4.12 for PIF and 4.02 for UE. The AUC of the net SCB ROC analysis was adequate for PIF (0.70) and 161 162 UE (0.79). Values for net SCB were found to be -10.7 for PIF and 9.25 for UE. The AUC of the absolute SCB ROC analysis was excellent for PIF and UE (AUC of 0.90 for both 163 164 measurements). Calculation of PASS yielded 52.4 for PIF and 41.4 for UE (AUC of 0.79 and 165 0.89, respectively). Patients demonstrated significant improvements on both PROMIS PIF

- 166 (60.15±6.98 vs. 51.78±9.41, *P*<.001) and PROMIS UE (34.70±9.45 vs. 42.31±9.98, *P*<.001) at
 167 final follow-up following biceps tenodesis (Figure 2).
- 168

169 Factors associated with achieving CSOs on PIF CAT

- 170 With respect to the PIF CAT, 70.5%, 27.7%, 38.4% and 38.4% of patients achieved
- 171 MCID, net SCB, absolute SCB and PASS at final follow-up, respectively. Regular exercise was
- associated with achieving MCID on PIF CAT (OR: 6.45, 95% CI: 1.08-38.4, P=.04) (Table 4).
- 173 Patients with higher preoperative UE CAT scores were less likely to achieve MCID on PIF CAT
- 174 (OR: 0.84, 95% CI 0.72-0.97, P=.02). Male gender was associated with achieving net SCB (OR:
- 175 5.85, 95% CI: 1.7-20.11, *P*=.005), absolute SCB (OR: 9.15, 95% CI: 2.48-33.81, *P*<.001) and
- 176 PASS (OR: 9.15, 95% CI: 2.48-33.81, P=.001). Patients with higher preoperative PIF CAT
- scores were less likely to achieve absolute SCB and PASS (OR: 0.83, 95% CI: 0.74-0.94,
- 178 *P*=.002).

179 Factors associated with achieving CSOs on UE CAT

180 With respect to the UE CAT, 62.5%, 37.5%, 38.4% and 48.2% of patients achieved

181 MCID, net SCB, absolute SCB and PASS on UE CAT at final follow-up, respectively. Regular

- 182 exercise was associated with achieving MCID (OR: 4.04, 95% CI: 1.27-12.4, P=.01) and net
- 183 SCB (OR: 18.94, 95% CI: 4.71-76.2, *P*=.009) (Table 5). Patients who used opioids
- preoperatively were significantly less likely to achieve MCID (OR: 0.03, 95% CI: 0-0.18, P
- 185 <.001) or net SCB (OR: 0.06, 95% CI: 0.01-0.49, *P*=.009). Additionally, patients with
- depression were less likely to achieve net SCB (OR: 0.23, 95% CI: 0.04-1.27, P=.002). Patients
- 187 with higher preoperative UE CAT scores were significantly less likely to achieve MCID (OR:
- 188 0.90, 95% CI: 0.84-0.96, *P*=.003) and more likely to achieve absolute SCB (OR: 1.08, 95% CI:

- 189 1.0-1.16, P=.04). Patients with higher preoperative PIF CAT scores were less likely to achieve
- 190 absolute SCB (OR: 0.89, 95% CI: 0.8-0.99, P=.03) or PASS (OR: 0.85, 95% CI: 0.76-0.95,
- 191 P=.005). Interestingly, male gender was predictive of achievement of PASS (OR: 4.38, 95% CI:
- 192 1.38-13.94, P=.01). Table 6 outlines preoperative PROMIS PIF and UE scores that were
- 193 predictive of achieving MCID, absolute SCB and PASS.
- 194

ournal proposition

DISCUSSION

196	The principal findings of this study were as follows: (1) the MCID, net SCB, absolute
197	SCB and PASS values were determined for the UE (4.02, 9.25, 43.4 and 41.1, respectively) and
198	the PIF (-4.12, -10.7, 52.4 and 52.4, respectively); (2) patients with higher preoperative UE
199	scores were less likely to achieve MCID, while patients with higher preoperative PIF scores were
200	less likely to achieve absolute SCB and PASS; (3) the majority of patients achieved the MCID
201	for PIF CAT (70.5%) and UE CAT (62.5%) at final follow-up; (4) male gender and regular
202	exercise were positive predictors of CSO achievement; and (5) preoperative opioid use,
203	depression and living alone were negative predictors of CSO achievement.
204	We found that patients with higher preoperative UE scores were less likely to achieve
205	MCID, while patients with higher preoperative PIF scores were less likely to achieve absolute
206	SCB and PASS. This finding is fairly intuitive considering how MCID, absolute SCB and PASS
207	are derived. MCID is a measurement of change in function that represents the minimum
208	improvement (or worsening) reported by our patients. Absolute SCB represents the score at
209	which patients report substantial benefit. PASS, on the other hand, represents what is acceptable
210	to our patients, and is a calculation rooted in patient satisfaction rather than functional outcomes.
211	While care should be taken not to conflate the two, absolute SCB and PASS are similar in that
212	they represent absolute values of successful postoperative outcomes ²⁸ .
213	Therefore, it is logical that patients with higher preoperative UE functional scores are less
214	likely to achieve a delta in their functional scores equivalent to the MCID, as they have less room
215	for improvement after surgery. A similar finding was reported by Puzzitiello et al who found
216	higher preoperative SANE scores to be associated with decreased odds of achieving the MCID
217	amongst patients undergoing isolated BT ¹⁵ . On the other hand, patients who report higher

preoperative PIF scores are less likely to achieve absolute thresholds such as absolute SCB and
PASS likely because they are starting from a lower functional baseline, and therefore require
greater relative improvements to achieve these absolute thresholds.

We found preoperative opioid use (OR: 0.06) and depression (OR: 0.23) to be associated 221 with decreased odds of achieving net SCB on PROMIS UE. This finding supports the work of 222 previous studies, which have demonstrated the negative effects of preoperative opioid use on 223 224 outcomes following common orthopaedic procedures such as rotator cuff repair (RCR), total shoulder arthroplasty (TSA), total knee arthroplasty (TKA) and spine surgery²⁹⁻³⁸. Depression, 225 226 along with anxiety, stress and catastrophic thinking, have all been linked to inferior outcomes following elective shoulder surgery ³⁹⁻⁴³. Of patients included in the analysis of this 227 investigation, 20.5%, 22.3%, 2.7% and 4.5% of patients underwent concomitant distal clavicle 228 excision, subacromial decompression, SLAP repair and rotator cuff debridement, respectively. 229 230 Of note, undergoing any of these procedures was not associated with patients' ability to achieve 231 CSOs on regression analysis. 232 Regular exercise was found to be associated with achievement of the MCID (OR: 6.45)

on PROMIS PIF and MCID (OR: 4.04) and net SCB (OR: 18.94) on PROMIS UE. Male gender was associated with achievement of the net SCB (OR: 5.85), absolute SCB (OR: 9.15), PASS (OR: 9.15) on PROMIS PIF, and PASS (OR: 4.38) on PROMIS UE. Male gender has been shown to be associated with the achievement of CSOs following a variety of orthopaedic procedures, including rotator cuff repair ^{44.47}. Interestingly, Daniels et al demonstrated that women reported greater pain and decreased shoulder function during the initial 3 months following arthroscopic rotator cuff repair, but these differences were no longer significant at 1-

- year follow up ⁴⁷. An appreciation of these risk factors may be useful to guide realistic patient
 and surgeon expectations in the preoperative setting.
- 242

243 Limitations

We acknowledge several limitations to this study. The first is that follow up was limited to a maximum of 9 months, rather than 1 year. Secondly, as the AUC value derived from anchorbased methods was insufficient, the MCID was calculated via a distribution method. While this method cannot incorporate patient responses, it is widely used and validated ¹⁹⁻²⁴. Lastly, patients included in this study received various combinations of concomitant procedures such as rotator cuff debridement, superior labrum anterior posterior (SLAP) repair, subacromial decompression or distal clavicle excision making the study population quite heterogeneous.

251 Conclusion:

- 252 Patients with higher preoperative UE scores were less likely to achieve MCID (OR: 0.84), while
- 253 patients with higher preoperative PIF scores were less likely to achieve absolute SCB and PASS
- 254 (OR: 0.83-0.89). The majority of patients achieved the MCID for PIF CAT (70.5%) and UE
- 255 CAT (62.5%) at final follow-up. Male gender (OR: 4.38-9.15) and regular exercise (OR: 6.45-
- 256 18.94) positively predicted CSO achievement while preoperative opioid use (OR: 0.06),
- depression (OR: 0.23) and living alone (OR: 0.90) were negative predictors of CSO
- achievement.

N=112		
Demographics	Mean ± SD/N (%)	
Age		
75-85	1 (0.9)	
65-74	3 (2.7)	
55-64	19 (17.0)	
30-55	65 (58.0)	
18-29	24 (21.4)	
Male gender	75 (67.0)	
BMI		
18.5-25	27 (24.1)	
25-29	41 (36.6)	
30-39	29 (25.9)	
> 40	15 (13.4)	
Lives alone	14 (12.5)	
Regular exercise	74 (66.1)	
Comorbidities		
Preoperative opioid use	12 (10.7)	
Arthritis	5 (4.5)	
Cancer	4 (3.6)	
Depression	15 (13.4)	
Diabetes	2 (1.8)	
Fibromyalgia	1 (0.9)	
Heart Disease	1 (0.9)	
Hypertension	12 (10.7)	
Thyroid dysfunction	9 (8.0)	
Valvular heart disease	1 (0.9)	
Alcohol abuse	6 (5.4)	
Smoking history		
Current every day smoker	9 (8.6)	
Current someday smoker	1 (1.0)	
Former smoker	13 (12.4)	
Never smoker	82 (78.1)	

TABLE 1
Patient Demographics and Comorbidities
N 110

TABLE 2 Introporting Variables			
Biceps pathology	N (%)		
Complete tear	2 (1.8)		
Partial tear	3 (2.7)		
Tenosynovitis	107 (95.5)		
Tenodesis type			
Open, subpectoral	103 (92.0)		
Arthroscopic, suprapectoral	9 (8.0)		
Fixation device			
Suture Anchor	51 (45.5)		
Tenodesis Screw	61 (54.5)		
Concomitant procedures			
Distal clavicle excision	23 (20.5)		
Subacromial decompression	25 (22.3)		
SLAP repair	3 (2.7)		
Rotator cuff debridement	5 (4.5)		

270 271

TABLE 3 Calculated MCID/SCB/PASS

Anchor	Value	AUC Distribution	
MCID			MCID
PIF	-5.57	0.52	-4.12
UE	10.33	0.56	4.02
Net SCB			
PIF	-10.7	0.70	-
UE	9.25	0.79	-
Absolute SCB			
PIF	52.4	0.90	-
UE	43.4	0.90	-
PASS			
PIF	52.4	0.79	-
UE	41.1	0.89	-

272

TABLE 4

Predictors of Clinically Significant Outcomes on the PIF CAT				
	Odds Ratio	95% CI	P-Value	
MCID				
Regular exercise	6.45	1.08-38.4	0.04	

0.72-0.97

Preoperative UE CAT 0.84

Net SCB

0.02

Male gender	5.85	1.7-20.11	0.005
Absolute SCB			
Male gender	9.15	2.48-33.81	< 0.001
Preoperative PIF CAT	0.83	0.74-0.94	0.002
PASS			
Male gender	9.15	2.48-33.81	< 0.001
Preoperative PIF CAT	0.83	0.74-0.94	0.002

Predictors of Clinically Significant Outcomes on the UE CAT

	Odds Ratio	95% CI	P-Value
MCID			
Regular exercise	4.04	1.27-12.8	0.01
Preoperative opioid use	0.03	0-0.18	< 0.001
Preoperative UE CAT	0.90	0.84-0.96	0.003
Net SCB			
Lives alone	0.90	0.84-0.96	0.002
Regular exercise	18.94	4.71-76.2	0.009
Preoperative opioid use	0.06	0.01-0.49	0.009
Depression	0.23	0.04-1.27	0.002
Absolute SCB			
Preoperative UE CAT	1.08	1-1.16	0.04
Preoperative PIF CAT	0.89	0.8-0.99	0.03
PASS			
Male gender	4.38	1.38-13.94	0.01
Preoperative PIF CAT	0.85	0.76-0.95	0.005

TABLE 6

Preoperative Scores Predictive of CSO Achievement					
	PIF Cutoff	AUC	UE Cutoff	AUC	
MCID					
PIF	59.1	0.72	36.2	0.65	
UE	64.1	0.54	29.1	0.64	
Absolute SCB					
PIF	56.1	0.76	38.5	0.74	
UE	61.0	0.77	34.3	0.79	
PASS					
PIF	56.1	0.76	38.5	0.74	
UE	61.0	0.77	34.3	0.78	

Cutoff analysis for net SCB achievement did not reach AUC of acceptable predictive power

Journal Prevention

- 290 Figure 1. Anchor questions administered postoperatively to assess function and satisfaction.
- 291 Figure 2. Patients demonstrated statistically significant improvements on both the PROMIS PIF
- CAT (60.15±6.98 vs 51.78±9.41, P < 0.001) and the PROMIS UE CAT (34.70±9.45 vs 292
- 293 42.31 ± 9.98 , P < 0.001) at 6 months following biceps tenodesis.

ournal proproof

294	References		
295			
296	1.	Saltzman BM, Leroux TS, Cotter EJ, et al. Trends in Open and Arthroscopic Long Head of	
297		Biceps Tenodesis. HSS J. 2020;16:2-8.	
298	2.	Werner BC, Brockmeier SF, Gwathmey FW. Trends in long head biceps tenodesis. Am J	
299		Sports Med. 2015;43:570-578.	
300	3.	Abraham VT, Tan BH, Kumar VP. Systematic Review of Biceps Tenodesis: Arthroscopic	
301		Versus Open. Arthroscopy. 2016;32:365-371.	
302	4.	Hsu AR, Ghodadra NS, Provencher MT, Lewis PB, Bach BR. Biceps tenotomy versus	
303		tenodesis: a review of clinical outcomes and biomechanical results. J Shoulder Elbow	
304		Surg. 2011;20:326-332.	
305	5.	Cella D, Yount S, Rothrock N, et al. The Patient-Reported Outcomes Measurement	
306		Information System (PROMIS): progress of an NIH Roadmap cooperative group during its	
307		first two years. Med Care. 2007;45:S3-S11.	
308	6.	Fries JF, Bruce B, Cella D. The promise of PROMIS: using item response theory to	
309		improve assessment of patient-reported outcomes. Clin Exp Rheumatol. 2005;23:S53-	
310		57.	
311	7.	Reeve BB, Hays RD, Bjorner JB, et al. Psychometric evaluation and calibration of health-	
312		related quality of life item banks: plans for the Patient-Reported Outcomes	
313		Measurement Information System (PROMIS). Med Care. 2007;45:S22-31.	
314	8.	Amtmann D, Cook KF, Jensen MP, et al. Development of a PROMIS item bank to	
315		measure pain interference. Pain. 2010;150:173-182.	
316	9.	Hays RD, Spritzer KL, Amtmann D, et al. Upper-extremity and mobility subdomains from	
317		the Patient-Reported Outcomes Measurement Information System (PROMIS) adult	
318		physical functioning item bank. Arch Phys Med Rehabil. 2013;94:2291-2296.	
319	10.	Cepeda NA, Polascik BA, Ling DI. A Primer on Clinically Important Outcome Values:	
320		Going Beyond Relying on P Values Alone. J Bone Joint Surg Am. 2020;102:262-268.	
321	11.	Cook CE. Clinimetrics Corner: The Minimal Clinically Important Change Score (MCID): A	
322		Necessary Pretense. J Man Manip Ther. 2008;16:E82-83.	
323	12.	Copay AG, Chung AS, Eyberg B, Olmscheid N, Chutkan N, Spangehl MJ. Minimum	
324		Clinically Important Difference: Current Trends in the Orthopaedic Literature, Part I:	
325		Upper Extremity: A Systematic Review. <i>JBJS Rev.</i> 2018;6:e1.	
326	13.	Hufeland M, Kolem C, Ziskoven C, Kircher J, Krauspe R, Patzer T. The influence of	
327		suprapectoral arthroscopic biceps tenodesis for isolated biceps lesions on elbow flexion	
328		force and clinical outcomes. <i>Knee Sura Sports Traumatol Arthrosc.</i> 2017:25:3220-3228.	
329	14.	Kukkonen J, Kauko T, Vahlberg T, Joukainen A, Aarimaa V. Investigating minimal clinically	
330		important difference for Constant score in patients undergoing rotator cuff surgery. J	
331		Shoulder Elbow Sura. 2013:22:1650-1655.	
332	15.	Puzzitiello RN, Gowd AK, Liu JN, Agarwalla A, Verma NN, Forsythe B, Establishing	
333	-	minimal clinically important difference, substantial clinical benefit, and patient	
334		acceptable symptomatic state after biceps tenodesis. J Shoulder Flbow Sura	
335		2019:28:639-647.	
336	16.	Zuke WA, Leroux TS, Gregory BP, et al. Establishing Maximal Medical Improvement After	
337		Arthroscopic Rotator Cuff Repair. Am J Sports Med. 2018:46:1000-1007.	

338	17.	Chalmers PN, Monson B, Frank RM, et al. Combined SLAP repair and biceps tenodesis
339		for superior labral anterior-posterior tears. Knee Surg Sports Traumatol Arthrosc.
340		2016;24:3870-3876.
341	18.	Mellano CR, Frank RM, Shin JJ, et al. Subpectoral Biceps Tenodesis With PEEK
342		Interference Screw: A Biomechanical Analysis of Humeral Fracture Risk. Arthroscopy.
343		2018;34:806-813.
344	19.	Berliner JL, Brodke DJ, Chan V, SooHoo NF, Bozic KJ. John Charnley Award: Preoperative
345		Patient-reported Outcome Measures Predict Clinically Meaningful Improvement in
346		Function After THA. Clin Orthop Relat Res. 2016;474:321-329.
347	20.	Chesworth BM, Mahomed NN, Bourne RB, Davis AM, Group OS. Willingness to go
348		through surgery again validated the WOMAC clinically important difference from
349		THR/TKR surgery. J Clin Epidemiol. 2008;61:907-918.
350	21.	Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality
351		of life: the remarkable universality of half a standard deviation. Med Care. 2003;41:582-
352		592.
353	22.	Nwachukwu BU, Chang B, Rotter BZ, Kelly BT, Ranawat AS, Nawabi DH. Minimal
354		Clinically Important Difference and Substantial Clinical Benefit After Revision Hip
355		Arthroscopy. Arthroscopy. 2018;34:1862-1868.
356	23.	Quintana JM, Escobar A, Bilbao A, Arostegui I, Lafuente I, Vidaurreta I. Responsiveness
357		and clinically important differences for the WOMAC and SF-36 after hip joint
358		replacement. Osteoarthritis Cartilage. 2005;13:1076-1083.
359	24.	Wyrwich KW, Bullinger M, Aaronson N, et al. Estimating clinically significant differences
360		in quality of life outcomes. <i>Qual Life Res.</i> 2005;14:285-295.
361	25.	Hamilton DF, Loth FL, MacDonald DJ, et al. Treatment Success Following Joint
362		Arthroplasty: Defining Thresholds for the Oxford Hip and Knee Scores. J Arthroplasty.
363		2018;33:2392-2397.
364	26.	Nwachukwu BU, Fields K, Chang B, Nawabi DH, Kelly BT, Ranawat AS. Preoperative
365		Outcome Scores Are Predictive of Achieving the Minimal Clinically Important Difference
366		After Arthroscopic Treatment of Femoroacetabular Impingement. Am J Sports Med.
367		2017;45:612-619.
368	27.	Martinez-Camblor P, Pardo-Fernandez JC. The Youden Index in the Generalized Receiver
369		Operating Characteristic Curve Context. Int J Biostat. 2019;15.
370	28.	Nwachukwu BU. Editorial Commentary: PASSing the Test Versus Acing It: Understanding
371		Clinically Significant Outcome Improvement in Arthroscopic Hip Surgery. Arthroscopy.
372		2019;35:1463-1465.
373	29.	Lee D, Armaghani S, Archer KR, et al. Preoperative Opioid Use as a Predictor of Adverse
374		Postoperative Self-Reported Outcomes in Patients Undergoing Spine Surgery. J Bone
375		Joint Surg Am. 2014;96:e89.
376	30.	Cheah JW, Sing DC, McLaughlin D, Feeley BT, Ma CB, Zhang AL. The perioperative effects
377		of chronic preoperative opioid use on shoulder arthroplasty outcomes. J Shoulder Elbow
378		Surg. 2017;26:1908-1914.
379	31.	Franklin PD, Karbassi JA, Li W, Yang W, Ayers DC. Reduction in narcotic use after primary
380		total knee arthroplasty and association with patient pain relief and satisfaction. J
381		Arthroplasty. 2010;25:12-16.

382	32.	Kazmers NH, Stephens AR, Tyser AR. Effects of Baseline Opioid Medication Use on
383		Patient-Reported Functional and Psychological Impairment Among Hand Clinic Patients.
384		J Hand Surg Am. 2019;44:829-839.

- 385 33. Kidner CL, Mayer TG, Gatchel RJ. Higher opioid doses predict poorer functional outcome
 386 in patients with chronic disabling occupational musculoskeletal disorders. *J Bone Joint* 387 Surg Am. 2009;91:919-927.
- 388 34. Lawrence JT, London N, Bohlman HH, Chin KR. Preoperative narcotic use as a predictor
 389 of clinical outcome: results following anterior cervical arthrodesis. *Spine (Phila Pa 1976)*.
 390 2008;33:2074-2078.
- 391 35. Morris BJ, Sciascia AD, Jacobs CA, Edwards TB. Preoperative opioid use associated with
 392 worse outcomes after anatomic shoulder arthroplasty. J Shoulder Elbow Surg.
 393 2016;25:619-623.
- 394 36. Namba RS, Singh A, Paxton EW, Inacio MCS. Patient Factors Associated With Prolonged
 395 Postoperative Opioid Use After Total Knee Arthroplasty. J Arthroplasty. 2018;33:2449 396 2454.
- 397 37. Sabesan VJ, Petersen-Fitts GR, Sweet MC, Katz DL, Lima DJL, Whaley JD. The impact of
 398 preoperative opioid use on outcomes after arthroscopic rotator cuff repair. *JSES Open* 399 Access. 2018;2:155-158.
- 400 38. Zywiel MG, Stroh DA, Lee SY, Bonutti PM, Mont MA. Chronic opioid use prior to total
 401 knee arthroplasty. *J Bone Joint Surg Am.* 2011;93:1988-1993.
- 402 39. Gil JA, Goodman AD, Mulcahey MK. Psychological Factors Affecting Outcomes After
 403 Elective Shoulder Surgery. *The Journal of the American Academy of Orthopaedic*404 Surgeons. 2018;26:e98-e104.
- 40. Potter MQ, Wylie JD, Greis PE, Burks RT, Tashjian RZ. Psychological distress negatively
 406 affects self-assessment of shoulder function in patients with rotator cuff tears. *Clin*407 *Orthop Relat Res.* 2014;472:3926-3932.
- 408 41. Wylie JD, Suter T, Potter MQ, Granger EK, Tashjian RZ. Mental Health Has a Stronger
 409 Association with Patient-Reported Shoulder Pain and Function Than Tear Size in Patients
 410 with Full-Thickness Rotator Cuff Tears. J Bone Joint Surg Am. 2016;98:251-256.
- 411 42. Bot AG, Menendez ME, Neuhaus V, Ring D. The influence of psychiatric comorbidity on
 412 perioperative outcomes after shoulder arthroplasty. *J Shoulder Elbow Surg.*413 2014;23:519-527.
- 41443.Werner BC, Wong AC, Mahony GT, et al. Causes of poor postoperative improvement415after reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2016;25:e217-222.
- 416 44. Weber AE, Locker PH, Mayer EN, et al. Clinical Outcomes After Microfracture of the
 417 Knee: Midterm Follow-up. *Orthop J Sports Med.* 2018;6:2325967117753572.
- 418 45. Chahla J, Kunze KN, Tauro T, et al. Defining the Minimal Clinically Important Difference
 419 and Patient Acceptable Symptom State for Microfracture of the Knee: A Psychometric
 420 Analysis at Short-term Follow-up. *Am J Sports Med.* 2020:363546520903279.
- 421 46. Sahoo S, Ricchetti ET, Zajichek A, et al. Associations of Preoperative Patient Mental
 422 Health and Sociodemographic and Clinical Characteristics With Baseline Pain, Function,
 423 and Satisfaction in Patients Undergoing Rotator Cuff Repairs. *Am J Sports Med.*424 2020;48:432-443.

- 425 47. Daniels SD, Stewart CM, Garvey KD, Brook EM, Higgins LD, Matzkin EG. Sex-Based
 426 Differences in Patient-Reported Outcomes After Arthroscopic Rotator Cuff Repair.
 427 Orthop J Sports Med. 2019;7:2325967119881959.
- 428
- 429

ournal proprio

Taking into account all activities you have done during your daily life, your level of pain, and also your functional impairment, do you consider that your current state is satisfactory?

No

