PROCEDURE 16

^{c0016} Distal Femoral Osteotomy

Matthew E. Gitelis, Alexander E. Weber, Adam B. Yanke, and Brian J. Cole

s0010 INDICATIONS

- u0010 Age less than 60 years old.
- u0015 Symptomatic unicompartmental arthritis.
- u0020 Malalignment with or without cartilage deficiency.
- $u0025\,$ Malalignment with or without meniscal deficiency.
- u0030 Normal, or correctable, ligamentous status.
- u0035 Willing to comply with rehabilitation.

s0015 ABSOLUTE AND RELATIVE CONTRAINDICATIONS

- u0040 Tricompartmental arthritis.
- u0045 Opposite compartment articular surface pathology.
- u0050 Flexion contracture >10°.
- u0055 Baseline knee flexion <90°.
- u0060 Medial/lateral tibial subluxation >1 cm.
- u0065 Inflammatory arthritis.
- $u0070~\bullet~$ Body mass index >35 kg/m².
- u0075 Smoker unwilling to quit.

s0020 EXAMINATION/IMAGING

- u0080 Examination
- u0085 Inspection
- u0090 Alignment (Q-Angle)
- u0095 Muscle bulk
- u0100 Prior surgical incisions
- u0105 Palpation
- u0110 Tenderness
- u0115 Crepitus (medial, lateral, patellofemoral)
- u0120 Active and Passive Range of Motion
- u0125 Hip
- u0130 Knee
- u0135 Strength
- u0140 Core
- u0145 Lower extremity
- u0150 Flexibility
- u0155 Ober test
- u0160 Hamstring
- u0165 Neurovascular Exam
- u0170 Bilateral lower extremity
- u0175 Patellar Exam
- u0180 Tilt

u0205

- u0185 Apprehension
- u0190 J sign
- u0195 Static and dynamic Q angle assessment
- u0200 Crepitus
 - Knee tests of stability and special tests
- u0210 Pivot shift, Lachman, anterior drawer
- u0215 Posterior drawer
- $_{\rm u0220}$ $\,$ $\,$ $\,$ Varus and valgus stress (at full extension and at 30° of flexion) $\,$

PROCEDURE 16 Distal Femoral Osteotomy

2

b0010 TREATMENT OPTIONS

Cortisone injections • Viscosupplementation

•

• Oral anti-inflammatory medications

Activity modifications
Varus producing off-loader brace Assistive devices (canes, walkers)

McMurray, Thessaly	u0225
 Anteromedial rotary instability 	u0230
 Posterolateral rotary instability 	u0235
 Imaging (Fig. 16.1) 	u0240
 Standard weight bearing radiographic series 	u0245
 Anteroposterior (AP), Rosenberg, lateral, and Merchant views 	u0250
 Used to evaluate joint degeneration and overall alignment. 	u0255
 Standardized sizing AP radiographs are performed weight bearing with the knees flexed 45° and the beam angled 10° in the caudal direction. 	u0260
 A calibration marker is placed at the level of the joint on the affected side. 	u0265
 Long-leg alignment views 	u0270
 Measurements of the mechanical axis are documented on the long-leg radio- graphs. 	u0275
 Lateral nonweight bearing 	u0280
 Sizing radiograph performed with the markers placed at the level of the pa- tella and the joint line. 	u0285
 Magnetic resonance imaging 	u0290
 Used to evaluate the soft tissues of the knee and the presence or absence of soft tissue fluid or joint effusion. 	u0295
 The articular cartilage, menisci, and ligaments should be closely evaluated. Unicompartmental bone edema can be an indicator of chronic compartment overload. 	
 Meniscal volume can be assessed using the coronal and sagittal sequences; however, caution should be used in evaluating meniscal injury following a prior meniscal surgery. 	
 Gradient echo sequences are used to decipher articular cartilage from the surrounding joint fluid and subchondral bone; however, gradient echo se- quences are not able to identify intrasubstance cartilage defects. 	u0310
 T2-weighted or short tau inversion recovery fluid sequences are used to eval- uate internal signal within the cartilage or subchondral bone edema. 	u0315
 Computed tomography scans 	u0320
 Helpful adjuvant in cases of prior anterior cruciate ligament reconstructions in which there is concern for bone tunnel enlargement. 	u0325

f0010

FIG. 16.1

PROCEDURE 16 Distal Femoral Osteotomy

3

b0015

s0025 SURGICAL ANATOMY

- u0360 A line is drawn from the center of the femoral head to the desired point on the plateau (Fig. 16.2).
- u0365 Another line is drawn from the point on the plateau to the center of the tibial plafond.
- u0370 The angle formed by the two lines is the degree of correction needed (Fig. 16.3).
- u0375 The correction point for correction of valgus arthrosis may be to the medial tibial spine or slightly into the medial compartment.
- u0380 The correction point for correction of valgus alignment in the setting of cartilage preservation or meniscal transplantation may be more modest such as into a neutral alignment between the tibial spines or to the medial tibial spine; however, the correction should not overcorrect into the medial compartment.

s0030 **POSITIONING**

- u0385 The patient is placed supine on the operating table. A radiolucent extension is applied to enable fluoroscopic examination. Alternatively, the patient can be placed on the ipsilateral edge of the table to enable fluoroscopic access by abducting the leg.
- u0390 A lateral post is applied in the middle of the thigh for the arthroscopic procedure.
- u0395 A tourniquet is applied and can be used if needed. It is usually deflated prior to closure to obtain adequate hemostasis.
- u0400 If a large correction is anticipated, the ipsilateral iliac crest is draped and a rolled blanket is placed under the same buttock.

f0015

FIG. 16.2

POSITIONING PEARLS

- Bump the hip until the leg is in neutral alignment with the patella facing straight up.
- Ensure adequate fluoroscopic examination can be performed prior to prepping and draping.

PROCEDURE 16 Distal Femoral Osteotomy

f0020

f0025

FIG. 16.4

FIG. 16.5

f0030

PORTALS/EXPOSURES	s0035
• A diagnostic arthroscopy is performed to verify that the patient is a good candidate for the osteotomy procedure, which includes no arthritis in the medial compartment.	u0415
 Two standard arthroscopy portals (anteromedial and anterolateral) are utilized. The irrigation fluid is aspirated at the end of the arthroscopic evaluation. 	u0420 u0425
PROCEDURE	s0040
Step 1 Incision and Approach	s0045

Step 1 Incision and Approach

- The planned incision is marked out on the lateral thigh beginning 2 cm to 3 cm distal u0430 to the lateral femoral epicondyle and extending proximally 12 cm to 15 cm (Fig. 16.4).
- The skin is incised and the subcutaneous tissues are dissected to the iliotibial band. u0435
- The iliotibial band is incised in-line with the skin incision (Fig. 16.5). u0440
- Care is taken to incise only the tendinous portion of the iliotibial band and not the $\ u0445$ vastus musculature deep to it.
- The vastus lateralis is bluntly elevated anteriorly off the posterior intermuscular sep- u0450tum (Fig. 16.6).
- Cautery is used to coagulate any large femoral perforating vessels as they are en- u0455 • countered.
- Once the distal femur is exposed, retractors are carefully placed anteriorly and pos- u0460teriorly to protect the soft tissue and neurovascular bundle, respectively.

b0020 STEP 1 PEARLS

• The surgical approach is done in a stepwise and methodical fashion to avoid the femoral perforating vessels, which can be cut and retract into the posteromedial thigh making hemostasis difficult.

PROCEDURE 16 Distal Femoral Osteotomy

5

f0035

f0045

FIG. 16.6

FIG. 16.7

FIG. 16.8

s0050 Step 2 Guide Pin Insertion

- u0470 Once the exposure is complete, the knee is extended and under fluoroscopic guidance a guidewire is inserted mirroring the trajectory of the osteotomy (Fig. 16.7).
- u0475 The appropriate guidewire starting position is 2 cm proximal to the lateral epicondyle, aiming distally toward to proximal aspect of the medial epicondyle.
- u0480 A second guidewire is placed parallel to the first (Fig. 16.8).

s0055 Step 3 Lateral Opening-Wedge Osteotomy

- u0490 A small oscillating saw is used to initiate the osteotomy on the lateral cortex (Fig. 16.9).
- u0495 Cutting proximal to the parallel pins, further from the joint surface, decreases the likelihood of stress-riser propagation into the trochlea or through the medial cortex (Fig. 16.10).
- u0500 The saw is followed by osteotomes in stacked fashion to a depth 1 cm from the medial cortex (Fig. 16.11).

s0060 Step 4 Correction

- u0535 Calibrated anterior and posterior wedges are placed to the planned preoperative level of correction (Fig. 16.12).
- u0540 The wedge position is assessed (Fig. 16.13).
- u0545 The anterior wedge is removed and the plate is placed in the osteotomy site (Fig. 16.14) and secured with sequential screws (Fig. 16.15).

FIG. 16.9

STEP 2 PEARLS

b0025

b0030

b0035

b0040

[AU5]

f0050

Ensure proper placement of the guide pins. The superior aspect of the trochlea can be marked under fluoroscopy to avoid pin placement into the patellofemoral joint.

STEP 3 PEARLS

- Avoid violating the medial femoral cortex.Use osteotome (instead of saw) to finish the
- cut.
- Use fluoroscopy to guide the bone cuts.

STEP 3 PITFALLS

• Avoid using thick osteotomes.

If medial femoral cortex is fractured, fix with medial sided plate and/or staples.

STEP 3 CONTROVERSIES

 Medial closing wedge DFO has reduced risk of nonunion, but requires two separate cuts for osteotomy.

f0040

6

f0055

f0065

f0075

PROCEDURE 16 Distal Femoral Osteotomy

FIG. 16.10

FIG. 16.12

FIG. 16.11

f0060

FIG. 16.13

f0070

FIG. 16.14

FIG. 16.15

f0080

PROCEDURE 16 Distal Femoral Osteotomy

7

f0085

FIG. 16.16

s0065 Step 5 Assess Position and Closure

- u0560 Under fluoroscopic guidance, care should be taken to ensure the plate wedge is securely in the osteotomy site (Fig. 16.16).
- u0565 Cortical and cancellous allograft can be used in the osteotomy site.
- u0570 The tourniquet is released and hemostasis is achieved.
- u0575 The wound is then irrigated and closed in a standard layered fashion (Fig. 16.17).

s0070 POSTOPERATIVE CARE AND EXPECTED OUTCOMES

- u0590 Osteotomies are performed as an outpatient procedure at our institution; however, these procedures can be long in duration and an overnight stay is reasonable.
- u0595 At the conclusion of the sterile dressing, patients have a cooling unit incorporated into the dressing and a hinged knee brace locked in extension placed on the operative leg.
- u0600 The weight bearing status is dictated by the concomitant procedures; however, 4 weeks to 6 weeks of nonweight bearing is customary.
- u0605 For isolated osteotomies, with newer locking plate technology, early weight bearing may be appropriate but at the surgeon's discretion.
- u0610 Range of motion is encouraged in the early postoperative period.
- u0615 Progressive weight bearing begins at 4 weeks to 6 weeks with a goal of full weight bearing without a brace at 8 weeks to 10 weeks.

s0075 EVIDENCE

Ekeland A, Nerhus TK, Dimmen S, Heir S: Good functional results of distal femoral opening-wedge osteotomy of knees with lateral osteoarthritis, Knee Surg Sports Traumatol Arthrosc: official journal of the ESSKA 24(5):1702–1709, 2016.

In this study, the authors reported functional outcomes using the Knee Injury and Osteoarthritis Outcome Score (KOOS) for twenty-four consecutive patients with lateral knee osteoarthritis treated with DFO. KOOS increased significantly as compared with baseline during the first year by 28% to 122% for all five subscores. This notable gain in functional outcomes remained at 10-year follow-up for those with surviving osteotomy. Six knees (25%) were converted to total knee arthroplasty at a mean of 6.4 years (Cl 3.3–9.6, range 4.0–11.8). The DFO survival rate was 74% at 10 years.

Finkelstein JA, Gross AE, Davis A: Varus osteotomy of the distal part of the femur. A survivorship analysis, J Bone Joint Surg Am 78(9):1348–1352, 1996.

The authors followed 21 knees (20 patients) long term or until failure after undergoing DFO. The probability of survival at 10 years was 64% (95 CI 48–80%). The authors concluded DFO is effective for the treatment of lateral compartment arthritis in the indicated patient with valgus deformity. Saithna A, Kundra R, Getgood A, Spalding T: Opening wedge distal femoral varus osteotomy for lateral

compartment osteoarthritis in the valgus knee, Knee 21(1):172–175, 2014. In this study, the authors reported on 18 patients undergoing DFO (21 knees). Four patients underwent total knee arthroplasty (19%) at a mean of 4.5 years. The cumulative survival rate for the procedure was 79% at 5 years. Functional outcomes scores (KOOS Pain and International Knee Documentation Committee) in the surviving cohort improved significantly from baseline.

f0090

b0045

b0050

b0055

STEP 4 PEARLS

- Intraoperative alignment rods or the bovie cord may be used to assess correction; however, these methods have been shown to be largely unreliable.
- Preoperative planning of correction is the best measure of successful correction.

STEP 5 PEARLS

• Ensure hemostasis before closure.

STEP 5 PITFALLS

 Large perforating femoral vessels can cause hematoma and compartment syndrome if injured and not checked by releasing the tourniquet.

POSTOPERATIVE PEARLS b0060

• Early motion is encouraged.

POSTOPERATIVE PITFALLS b0065

• Early weight bearing (within the first 1 week to 2 weeks) is discouraged.

PROCEDURE 16 Distal Femoral Osteotomy

Thein R, Bronak S, Thein R, Haviv B: Distal femoral osteotomy for valgus arthritic knees, J Orthop Sci 17(6):745–749, 2012.

This study reported on six patients (7 knees) after undergoing DFO with a mean followup of 6.5 years. Clinical outcomes were assessed by the Oxford Knee Score. The mean Oxford Knee Score improved from 13.1 ± 8.6 to 26 ± 12.5 from preoperation to most recent followup. No patients required additional surgery.

Wang JW, Hsu CC: Distal femoral varus osteotomy for osteoarthritis of the knee, J Bone Joint Surg Am 87(1):127–133, 2005.

In this study, 30 patients (30 knees) were managed with DFO for the treatment of noninflammatory lateral-compartment arthritis with an associated valgus deformity. The authors reported 25 patients (83%) had a satisfactory result, 2 (7%) had a fair result according to the Hospital for Special Surgery rating system, and 3 (10%) were converted to a total knee arthroplasty. With conversion to total knee arthroplasty as the end point, the cumulative 10-year survival rate for all patients was 87% (95% CI, 69% to 100%).

Zarrouk A, Bouzidi R, Karray B, Kammoun S, Mourali S, Kooli M: Distal femoral varus osteotomy outcome: Is associated femoropatellar osteoarthritis consequential? Orthop Traumatol Surg Res 96(6):632–636, 2010.

The authors reported on 20 patients (22 knees) after undergoing opening DFO for lateral tibiofemoral osteoarthrosis of a valgus knee. Eighteen knees had good or excellent results (80%), two had fair results (9.5%), and two had poor results (9.5%). The 8-year survival rate was 91% (CI, 69–100%). The mean preoperative International Knee Society score increased from 49.28 to 74.23 at the most recent follow-up.