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Abstract Hyaline cartilage is an essential component for the form and function of 
articulating joints, such as the knee. With the annual incidence on the rise, there 
are between an estimated 30,000 and 100,000 chondral repair procedures that 
are performed yearly in the United States. Marrow stimulation is a commonly 
used technique for articular cartilage repair. Marrow stimulation involves the 
perforation of the subchondral bone plate, most commonly with an arthroscopic 
microfracture awl, for the release of marrow elements. The marrow elements 
fill the articular cartilage defect forming a fibrocartilage repair. Though 
arthroscopic microfracture is considered by some as the gold standard therapy 
for cartilage repair, short- term outcomes have been shown to be unreliable and 
unsustainable. Some experts now opine that marrow stimulation as it currently 
exists should be outright abandoned.
Recently, however, there has been a push for new innovations in the 
augmentation of the marrow stimulation techniques in order to attain more 
sustainable outcomes and decrease associated complications. The augmentation 
of microfracture via the addition of post-microfracture intra-articular platelet-
rich plasma (PRP), bone marrow aspirate concentrate (BMAC), and adipose-
derived stem cells (ASCs) is an exciting advancement in marrow stimulation. 
Also, the recent introduction of the nanofracture, “rebirth” of drilling, and 
biocartilage techniques offer promising technological advancement in the 
field of marrow stimulation. This chapter focuses on clinical indications, 
surgical technique, and the outcomes of marrow stimulation procedures and 
the augmentation of these procedures.
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 Introduction

Hyaline cartilage is an essential component for 
the form and function of articulating joints, such 
as the knee. While the ideal management of 
chondral defects continues to be investigated, it is 
known that hyaline articular cartilage has limited 
capacity for healing due, in part, to the articular 
surface layer’s lack of intrinsic blood supply, 
mitotic activity, and poor progenitor cell recruit-
ment [1]. Therefore, the risk of symptoms (pain, 
effusion, decreased activity, loss of function) 
related to chondral defects and the likelihood of 
lesion progression to eventual osteoarthritis 
remains pervasive [2, 3]. With increases in the 
annual incidence reported at up to 5%, there are 
between 30,000 and 100,000 chondral repair pro-
cedures that are performed yearly in the United 
States [4, 5]. Currently, chondral lesions have 
been hypothesized to exist in approximately 12% 
of the population [6], most commonly, in the 
medial compartment of the knee with the second 
most common being the patellofemoral joint [7].

Intrinsic cartilage repair relies on chondrocyte 
activation and recruitment of mesenchymal stem 

cells (MSCs) and differentiation of surface chon-
droprogenitor cells [1]. However, an individual’s 
response to chondral damage is patient-specific. 
Adult-aged patients have less potential for carti-
lage regeneration since fully differentiated chon-
drocytes have restricted mitotic activity and 
limited local progenitor cell recruitment [8]. 
Furthermore, cartilage tissue has limited ability 
to recruit MSCs at the articular surface for repair 
[1]. While the effect of chronological age on car-
tilage repair is inconsistent in existing clinical 
studies, several animal models that have sug-
gested a negative correlation between age and 
chondrogenesis or MSC potential [9, 10]. Recent 
basic science models also support a trend toward 
suboptimal outcomes of cartilage repair proce-
dures with advancing age [11]. In a study exam-
ining cartilage regeneration potential in a bovine 
model, there was a diminished collagen-forming 
capacity in adult chondrocytes, as well as less 
induction of MSCs. Likewise, fetal and juvenile 
model MSCs displayed greater comparative 
matrix and mechanical properties than that seen 
with adult model MSCs [10]. Therefore, due to 
the very low intrinsic regenerative healing of 
symptomatic full-thickness cartilage defects, par-
ticularly in the aging population, the progression 
of cartilage defects into osteoarthritis remains a 
concern.

Marrow stimulation was initially proposed as 
a treatment to recruit autogenous MSCs for full- 
thickness articular cartilage defects. After a 
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 thorough debridement of overlying diseased or 
unstable cartilage flaps and the underlying calci-
fied cartilage layer, all marrow stimulation tech-
niques involve scoring or perforating the 
subchondral bone plate in order to release mar-
row elements into the base of the defect. MSCs 
can subsequently differentiate into fibrochondro-
cytes which facilitate formation and stabilization 
of a fibrocartilage clot. These “cartilage-like” 
fibrocartilage clots contain varying amounts of 
type I, II, and III collagen, which fills and ulti-
mately remodels in the defect to replace native 
hyaline cartilage with fibrocartilage.

The idea of marrow stimulation was popular-
ized in the late 1950s when Pridie described the 
technique of subchondral drilling, often termed 
Pridie drilling. Pridie drilling involves the open 
drilling of exposed subchondral bone with a 
Kirschner wire to stimulate bleeding and bone 
marrow recruitment [12]. Several techniques iter-
ated on Pridie’s technique. One of these iterations 
was spongialization, an aggressive approach in 
which the subchondral bone plate is completely 
removed exposing the cancellous bone or “spon-
giosa.” [13]. Though Pridie drilling and its adap-
tations helped develop the concept of marrow 
stimulation techniques, they were quickly 
replaced by other less invasive procedures as 
arthroscopic techniques evolved. In the 1970’s, 
Dr. Lanny Johnson popularized abrasion arthro-
plasty, an arthroscopic superficial abrasion per-
formed to stimulate repair of osteoarthritic 
lesions [14]. As compared to the previous open 
drilling, this modified technique encouraged 
quicker postoperative rehabilitation and greater 
precision [14]. Abrasion arthroplasty was widely 
adopted as a viable method to treat osteoarthritis, 
until Bert and Rand reported that abrasion arthro-
plasty provided patients with no significant ben-
efit over those treated with debridement only [15, 
16]. Consequently, the technique was abandoned. 
Recently, however, a resurgence of abrasion 
arthroplasty investigations has occurred. Sansone 
et  al. [17] recently displayed survivorship was 
89.5% for patients younger than 50  years for 
small lesions (<4  cm2) at mean follow-up of 
20 years. Due to these recent investigations, reas-
sessment of abrasion arthroplasty as a treatment 

of full-thickness cartilage defects may be 
warranted.

In recent years, the most popular iteration of 
marrow stimulation, microfracture (see drilling 
below), was popularized in the late 1990s by 
Steadman and is considered by some experts as 
the first-line gold standard treatment for isolated 
cartilage defects [18]. According to the large 
insurance database, approximately 78,000 micro-
fracture procedures are performed annually in the 
United States. Though early clinical outcomes 
have been shown to be favorable, the highest 
level of evidence documenting the comparative 
effectiveness of microfracture is mostly derived 
from selected randomized control trials. Also, the 
mid- to long-term decline in benefit after primary 
microfracture has generated concerns about the 
sustainability of early clinical outcomes [19]. In a 
systematic review by Erggelet et al. [20], the sta-
tus of microfracture as the gold standard for treat-
ment of cartilage lesions is debated, stating that 
future comparative prospective trials are required 
to definitively acknowledge microfracture as a 
procedure of choice. Furthermore, some experts 
assert that microfracture does not predictably 
provide better outcomes than debridement alone, 
alters the microarchitecture of underlying bone, 
and should be outright abandoned [15].

Different drilling instrumentations impart dis-
tinct mechanical differences upon the subchon-
dral bone. Mithoefer has opined (personal 
communication or ICRS annual meeting, 
September 25, 2016) that drilling with a 
1  mm  K-wire should be considered “second- 
generation microfracture” as a result of 
Eldracher’s work confirming that drilling with a 
1 mm drill bit avoids the formation of subchon-
dral cysts and intralesional osteophytes [21, 22]. 
The use of a microfracture awl has been reported 
to result in more bone compaction. The dense 
fractured bone accumulations can block marrow 
space channels and inhibit MSC migration to the 
defect surface [23]. Subchondral drilling allowed 
more consistently patent channels for cell migra-
tion. Additionally, Chen et al. have demonstrated 
that drilling to greater depths (6 mm) allowed for 
greater fill of the cartilage defect with more hya-
line character in the repair matrix [24].
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The suspected predominant causal factors for 
variable to poor long-term clinical outcomes for 
microfracture include inadequate clot stability 
and the poor long-standing viability and durabil-
ity of fibrocartilage regenerate. Fibrocartilage 
lacks the native type II collagen normally found 
in hyaline articular cartilage and offers a 
decreased capacity to tolerate the high stress and 
force with repetitive loading [25]. This decrease 
in longevity and durability would ultimately lead 
to poorer long-term outcomes seen with the 
microfracture technique [25]. Notably, the results 
following marrow stimulation are often attributed 
to poor-quality tissue formation. The senior 
author, however, believes that the results of mar-
row stimulation can in many cases mirror those 
of other cartilage repair procedures if tradition-
ally recognized comorbidities are addressed at 
the time of treatment in addition to rigorous 
attention to technical details and postoperative 
rehabilitation. Thus, recently, there has been a 
push for new innovations in the augmentation of 
the microfracture techniques in order to attain 
more sustainable outcomes and decrease associ-
ated complications such as intralesional osteo-
phytes, subchondral cysts, and weakness of the 
subchondral plate (see complications section 
below). The augmentation of microfracture via 
the addition of post-microfracture intra-articular 
platelet-rich plasma (PRP), bone marrow aspirate 
concentrate (BMAC), and adipose-derived stem 
cells (ASCs) is an exciting advancement in mar-
row stimulation. Also, the recent introduction of 
the nanofracture, “rebirth” of drilling, and bio-
cartilage techniques offer promising technologi-
cal advancement in the field of marrow 
stimulation. This chapter focuses on clinical indi-
cations, surgical technique, and the outcomes of 
marrow stimulation procedures and the augmen-
tation of these procedures.

 Indications and Contraindications

Microfracture procedure is indicated in treatment 
of symptomatic grade III–IV articular cartilage 
lesions in younger patients (<40  years old). 
Microfracture is currently recommended for 

smaller (<2–3 cm2) contained focal lesions about 
the trochlea, condylar surfaces. It should be 
avoided in the treatment of diffuse, large 
(>4  cm2), or bipolar articular cartilage defects, 
and caution is warranted in patellar lesions in 
light of findings reported by Kreuz [26]. Similarly, 
the results of microfracture remain guarded when 
there are significant subchondral bone changes 
on MRI.

 Technique

 Preparation of the Lesion Site

The surgical procedure begins with the assess-
ment and debridement of the full-thickness artic-
ular cartilage lesion. To debride the cartilage, 
sharpened ringed, angled, and/or straight 
arthroscopic curettes are used to remove any 
unstable cartilage overlying or encircling the 
chondral defect. It is critical to achieve a perim-
eter of healthy cartilage margins with vertical 
walls in order to optimize progenitor cell clot 
adherence and stabilization upon release from the 
underlying marrow channels, as well as to pro-
vide a discrete load-bearing transition zone. 
Finally, with care to avoid aggressive handling of 
the subchondral bone, the calcified cartilage layer 
at the base of the defect is removed using a curette 
to enhance nutrition diffusion and clot adherence 
at the base [27]. Any concomitant intra-articular 
disease should be addressed prior to microfrac-
ture or marrow stimulation.

 Microfracture and Drilling Marrow 
Stimulation

An arthroscopic awl is traditionally used to make 
multiple small perforations 2.5 mm in diameter 
and 2 mm deep in the exposed subchondral bone. 
The senior author now prefers drilling using a 
motorized shaver (i.e., PowerPick, Arthrex, Inc., 
Naples FL). The microperforation component of 
the procedure should commence only after all 
other procedures of the case are completed. The 
awl perforation or drilling process should begin 
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at the periphery and then progress toward the 
center of the defect. The author’s preferred holes 
for drilling are 1.5 mm in diameter and approxi-
mately 6 mm deep, while nanofracture is 1.0 mm 
diameter and up to 9.0 mm deep. These are placed 
3–4  mm apart allowing ample space to ensure 
that the holes do not become confluent during the 
perforation process (Fig. 16.1). Once microper-
foration is complete, arthroscopic fluid inflow is 
stopped to allow visualization of the egress of 
marrow elements from the marrow channels. If 
inadequate bleeding or fat droplets are evident, 
repeat drilling may be utilized for greater depth 
in order to enhance marrow access. Of note, 
microfracture of the patella is accompanied with 
distinctive technical challenges, involving a 
higher degree of difficulty with visualization and 
access of the lesions arthroscopically when com-
pared with microfracture of the tibiofemoral 
joint. Also, microfracture of the patella requires 
counterpressure on the anterior aspect of the 
patella.

 Rehabilitation

Rehabilitation plays a crucial role in providing 
the optimal environment for chondrogenesis and 
the protection of the fibrocartilage clot matrix. 
Because of the high degree of inconsistency of 
chondral injuries, due to variability in  location 
and size, the rehabilitation program may need to 
be altered to accommodate concomitant intra- 
articular pathology. The senior author has devel-
oped two basic protocols for microfracture 

postoperative rehabilitation based on location: 
tibiofemoral/femoral condyle (Table  16.1) or 
patellofemoral (Table 16.2).

 Complications

As the body of knowledge in cartilage resto-
ration grows, chondral damage has become 
increasingly characterized as a disease of the 
osteochondral unit rather than simply the articu-
lar surface. Marrow stimulation and microfrac-
ture has been suggested to have a significant 
impact on the architecture of the subchondral 
bone due to the penetration of the bone plate. 
These penetrating injuries to the subchondral 
bone have been suggested to trigger the activa-
tion of a secondary center of ossification leading 
to the eventual formation of intralesional osteo-
phytes [28]. Intralesional osteophytes are bony 
advancements of the underlying subchondral 
bone that invade and disrupt de novo fibrocarti-
lage regeneration and histological organization. 
Furthermore, this is not an uncommon occur-
rence. In a retrospective study examining micro-
fracture by Cole et al. [29], 54% of patients had 
developed osteophytes at 6  months postopera-
tively, while approximately 70% of patients had 
developed osteophytes at 12 months. Perforation 
also has a known effect on the infrastructure 
of the subchondral bone plate. The penetrated 
subchondral bone plate displays reduced bone 
mineral density and thinner trabeculae of the 
subarticular spongiosa [30] .Thus, over exuber-
ant subchondral drilling may induce changes 

Fig. 16.1 Arthroscopic images of the left knee joint of a (a) well-prepared chondral defect, (b) a standard microfrac-
ture drilling of the subchondral bone, and (c) fat and blood egress after the tourniquet is let down
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in the subchondral bone  microarchitecture and 
intralesional osteophytes but also weaken the 
entire osteochondral unit [30].

Interestingly, bone cyst formation has also 
been reported in up to 33% of patients [19]. 
Also, a recent sheep model study by Beck et al. 
demonstrated that 42% and 92% of models had 
subchondral cyst formation at 13 and 26  weeks 
post-microfracture or augmented microfracture, 
respectively [31]. Experts hypothesize that sub-
chondral bone cyst formation may be caused by an 
influx of synovial fluid in subarticular bone result-
ing in a localized increased synovial fluid pres-
sure and cytokine-induced osteoclast- mediated 
bone resorption [30, 31]. Subchondral cysts are 
a cardinal feature of osteoarthritis and may repre-
sent a sign of progression of the cartilage defect. 
The senior author believes that these subchondral 
changes can minimized by drilling the lesion 
rather than using an awl, avoiding confluence of 
the drill holes, and avoiding postoperative loading 

of the newly prepared lesion for at least 6 weeks. 
Conceptually, if the patient loads the freshly pre-
pared lesion, the bone responds similar to fracture 
repair including bone overgrowth and sclerotic 
changes.

 Clinical Outcomes

The reported outcomes of microfracture surgery 
have been widely variable. Many investigations 
have reported successful early short-term clinical 
outcomes (<24 months) for microfracture surger-
ies regardless of etiology of the chondral lesion 
[18, 32, 33]. However, the majority of existing 
studies are case series without control group 
comparison. In a seminal systematic review of 
3122 patients, Mithoefer et al. [19] reported that 
microfracture had effectively improved knee 
function over the first 24 months, with 75–100% 
of microfracture patients indicating improved 

Table 16.1 Microfracture/BioCartilage of femoral condyle rehabilitation protocol

Microfracture/BioCartilage of femoral condyle rehabilitation protocol
Weight 
bearing Brace ROM Exercises

Phase I: 0–6 weeks Non-WB 0–2 weeks: 
Locked in full 
extension at all 
times
Off for CPM and 
exercise only
Discontinue after 
2 weeks

0–6 weeks: Use CPM 
for 6 h/day, beginning 
at 0–40°; advance 
5–10° daily as tolerated

0–2 weeks: Quad sets, SLR, calf 
pumps, passive leg hangs to 90° 
at home
2–6 weeks: PROM/AAROM to 
tolerance, patella and tibiofibular 
joint mobs, quad, hamstring, and 
glut sets, SLR, side-lying hip 
and core

Phase II: 6–8 weeks Advance 
25% weekly 
until full

None Full Advance phase I exercises

PHASE III: 
8–12 weeks

Full None Full Gait training, begin closed chain 
activities: wall sits, shuttle, 
mini-squats, toe raises
Begin unilateral stance 
activities, balance training

Phase IV: 
12 weeks–6 months

Full None Full Advance phase III exercises; 
maximize core/glutes, pelvic 
stability work, eccentric 
hamstrings
May advance to elliptical, bike, 
pool as tolerated

Phase V: 
6–12 months

Full None Full Advance functional activity
Return to sport-specific activity 
and impact when cleared by MD 
after 8 months
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knee scores at short-term clinical follow-up. 
However, the long-term outcomes of microfrac-
ture were variable and suggested deterioration 
over time. After 2 years, 47–80% of microfrac-
ture patients reported functional decline from 
their original improvements, as also supported by 
Steinwachs et al. at longer-term follow-up. These 
authors also interestingly reported clinical 
decline at earlier time points (18 months postop-
eratively) among older patients and in patients 
with larger defects (>2.5 cm2) [8].

Long-term outcomes in highly active and 
athletic patients have also exhibited suboptimal 
results. Steadman et  al. initially reported favor-
able clinical outcomes in several subsets of 
professional athletes following microfracture, 
including professional alpine skiers [18, 34]. In 
this 2-year follow-up, Steadman reported that the 
median postoperative Tegner activity scale was 
10, and there were significant improvements in 
mean postoperative Lysholm score and patient 

satisfaction score, with 95% of patients returning 
to competitive skiing [34]. In contrast, a prospec-
tive study of athletes by Gobbi et al. [33] demon-
strated an improved Tegner activity scale at 2-year 
postoperatively, although 80% of the athletes in 
the study progressively declined in sport activity 
at the final follow-up. When examining return to 
sport (RTS) in National Football League athletes, 
Andrews et  al. reported that players receiving 
microfracture were 4.4 times less likely to RTS 
than those treated with chondroplasty alone [35]. 
In two studies following National Basketball 
Association (NBA) athletes, there was a signifi-
cant correlation observed between microfrac-
ture and decreased minutes per game, decreased 
player efficiency rating, or points per game [36, 
37]. More importantly, 21% of the NBA players 
treated with microfracture did not return to pro-
fessional competition in the NBA [36].

Other investigations have sought to evaluate 
long-term outcomes of athletes with microfracture 

Table 16.2 Microfracture of patella/trochlea rehabilitation protocol

Microfracture of patella/trochlea rehabilitation protocol
Weight 
bearing Brace ROM Exercises

Phase I: 0–6 weeks Full 
with 
brace

0–1 week: Locked in 
full extension at all 
times
Off for CPM and 
exercise only
1–4 weeks: Unlocked 
and worn daytime 
only
Discontinue when 
quads can control 
SLR without 
extension lag

0–6 weeks: Use CPM 
for 6 h/day, 
beginning 0–30° for 
0–2 weeks
2–4 weeks: 0–60°
4–6 weeks: 0–90°

0–2 weeks: Quad sets, SLR, calf 
pumps, passive leg hangs to 45° at 
home
2–6 weeks: PROM/AAROM to 
tolerance, patella and tibiofibular 
joint mobs, quad, hamstring, and 
glute sets, SLR, side-lying hip and 
core

Phase II: 6–8 weeks Full None Full Advance phase I exercises
Phase III: 
8–12 weeks

Full None Full Gait training, begin closed chain 
activities: wall sits, mini-squats, 
toe raises, stationary bike
Begin unilateral stance activities, 
balance training

Phase IV: 
12 weeks–6 months

Full None Full Advance phase III exercises; 
maximize core/glutes, pelvic 
stability work, eccentric hamstrings
May advance to elliptical, bike, 
pool as tolerated

Phase V: 
6–12 months

Full None Full Advance functional activity
Return to sport-specific activity 
and impact when cleared by MD 
after 8 months
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versus other cartilage repair techniques. Gudas 
et al. performed a randomized controlled trial in 
young active athletes under the age of 40 with 
mean follow-up of 37.1 months, and they revealed 
significant superiority of osteochondral autograft 
transplant (OAT) over microfracture for the repair 
of articular cartilage defects in the knee, and only 
52% of microfracture athletes could return to sport 
at the preinjury level [38]. When investigating 
microfracture vs OAT at the 10-year follow-up, 
both groups retained significant clinical improve-
ment in postoperative International Cartilage 
Repair Society (ICRS) scores compared to base-
line, but results were significantly better in OAT 
patients than microfracture group [39]. Finally, a 
systematic review by Harris et  al. suggested the 
overall rate of return to sport was worse after 
microfracture than seen with autologous chondro-
cyte implantation (ACI) or OAT, and the micro-
fracture patients that were able to return to sport 
more frequently experienced diminished perfor-
mance [40].

Mithoefer et  al. [19] also described several 
preoperative factors and demographic factors 
associated with clinical outcomes after micro-
fracture. Improved surgical results were identi-
fied in patients with defect size less than 4 cm2. 
BMI was also inversely correlated to knee 
function postoperatively, and there were sig-
nificantly worse outcomes described in patient 
population of BMI >30 kg/m2. Moreover, higher 
Tegner activity scores of patients preoperatively 
were associated with improved clinical out-
comes after microfracture. Age is likely the 
most commonly reported associated factor with 
microfracture outcomes. Overall, younger age 
has resulted in better clinical outcomes, with 
reported age thresholds varying between 30 and 
40 years of age.

 Augmentation of Marrow 
Stimulation

Marrow stimulation augmentation techniques 
seek to improve upon the two current critical 
weaknesses in marrow stimulation derived 
repairs: the poor durability of the repaired clot 

and the lack of type II cartilage in the typical 
fibrocartilage repair.

 Hyaluronic Acid

Hyaluronic acid (HA) is a naturally occurring 
high molecular weight glycosaminoglycan pres-
ent within articular cartilage and synovial fluid. 
HA provides the joint with viscoelastic proper-
ties, lubrication, and shock absorbancy, and it 
also contributes to the extracellular matrix. As 
osteoarthritis (OA) progresses, the concentration 
of high molecular weight HA decreases and 
shifts toward an increase in low molecular weight 
HA, causing a lessening of the viscoelastic prop-
erties usually provided to the joint. Historically, 
intra-articular HA injections have been used as 
palliative treatment for OA, via the process of 
chondroprotection [41]. HA in the joint has the 
ability to bind to cluster of differentiation 44 
(CD44) and inhibit the expression of interleukin 
(IL)-1β, subsequently inhibiting the production 
of catabolic metalloproteinases. If allowed to 
activate, the catabolic metalloproteinases would 
then cause degradation and destruction of articu-
lar cartilage collagen and the joint surface. The 
HA-CD44 binding pathway also augments chon-
droprotection through decreased apoptosis of 
chondrocytes, allowing preserved synthesis of 
the cartilage extracellular matrix and slowed 
degeneration [41].

Currently, studies have suggested that HA vis-
cosupplementation may enhance proliferation 
and differentiation of chondrocytes, and it may 
provide a framework for MSCs released from the 
bone marrow [42, 43]. Recently, basic science 
studies have reported varied outcomes in using 
HA augmentation in microfracture. Though sev-
eral studies have reported significantly improved 
ICRS, gross appearance, and histology in rabbit 
models treated with combined microfracture and 
HA injection augmentation [42, 43], separate 
contrasting studies suggest that HA augmenta-
tion does not improve the quality of repair tissue 
[44].

Clinically, there are a limited number of stud-
ies investigating HA augmentation outcomes, but 
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some promising evidence does exist, especially 
in regard to microfracture of talar cartilage 
defects. In a RCT including 57 patients (Doral 
et  al.) [45], patients receiving microfracture for 
osteochondral talus lesions were then also ran-
domly selected to receive intra-articular HA 
injections. Though both groups were found to 
have significantly higher postoperative American 
Orthopedic Foot and Ankle Society (AOFAS) 
scores when compared to preoperative scores, the 
increase in postoperative scores was also found 
to be significantly higher in the HA injection 
group when compared to a noninjection group at 
2-year follow-up. Similarly, a RCT by Shang 
et  al. also displayed a significant increase in 
AOFAS and Visual Analog Scale (VAS) for pain 
after talar microfracture augmented by HA vs 
microfracture alone at least 9 months of follow-
 up [46]. Although these studies show promising 
advances, further clinical evidence is required, 
especially in regard to microfracture in other 
large, weight-bearing joints and the impact of 
HA on long-term durability repairs.

 Platelet-Rich Plasma

Cellular growth factors have a critical effect on 
articular cartilage growth and homeostasis. 
Several of these critical growth factors are found 
and stored in the α-granules of platelets, includ-
ing platelet-derived growth factor (PDGF), trans-
forming growth factor-β (TGF-β), vascular 
endothelial growth factor (VEGF), and many 
more [47, 48]. Platelet-rich plasma (PRP) is 
plasma containing supraphysiologic levels of 
platelets and autogenous growth factors derived 
from centrifuged peripheral venous blood. When 
activated with calcium chloride, targeted injec-
tions of PRP site of cartilage injury may act as a 
therapeutic modality in and augment cartilage 
repair techniques.

Recent in vitro and in vivo studies have dem-
onstrated that PRP functions through modulation 
of several growth factors and cytokines, promot-
ing differentiation, proliferation, signaling, and 
migration of chondrocytes and progenitor cells. 
Chondrocytes treated in  vitro with PRP have 

shown increased proliferation and increased 
deposition of “hyaline-like” extracellular matrix 
type II collagen and glycosaminoglycans (GAGs) 
[49]. Subchondral bone progenitor cells have 
also been shown downstream effects from 
PRP. Kruger et  al. [50] evaluated the migration 
capacity of human progenitor cells derived from 
subchondral bone in the presence of and without 
PRP and showed significantly greater migration 
of human subchondral progenitor cells on che-
motaxis assays with exposure to PRP than 
untreated controls. Furthermore, histological 
analysis revealed that progenitor cells exposed to 
PRP displayed significantly improved immuno-
histochemical staining for proteoglycans and 
increased concentration of type II collagen, sug-
gesting that PRP significantly increased cartilage 
matrix formation when compared to the control 
progenitor cells. Finally, PRP injections have 
been reported to be protective against further car-
tilage degradation via inhibition of nuclear 
factor-κB (NF-κB), an important transcription 
factor required for expression of many inflamma-
tory mediators, such as cytokines IL-1β, tumor 
necrosis factor-α (TNF- α), and interleukin-6 [48, 
49]. Modulation of the NF-κB allows evasion of 
this dangerous and destructive pro-inflammatory 
pathway.

Clinical outcomes of PRP injection augmenta-
tion of microfracture (Fig. 16.2), however, have 
conveyed mixed results. In a prospective cohort 
study comparing knee microfracture with PRP 
augmentation and classic microfracture alone, 
the authors found no statistically significant dif-
ference between the two groups in IKDC sub-
jective scale, VAS, or SF-36 at any of the 
follow-up timeframes (3, 6, 12, and 24 months) 
[51]. Similarly, in a level II randomized clinical 
study, Manunta et  al. failed to show a statisti-
cally significant difference in International 
Knee Documentation Committee (IKDC) or 
VAS at any outcome timeframe between PRP-
enhanced microfracture and microfracture of 
the knee alone [52]. By contrast, several studies 
have shown more promising results in PRP 
injections with microfracture in talus osteo-
chondral defects [53–55]. In particular, a level II 
evidence study by Guney et  al. revealed that 
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patients who underwent talus microfracture 
with PRP injection did significantly better on 
AOFAS scoring system, Foot and Ankle Ability 
Measure (FAAM), and VAS for pain at an aver-
age of 16.2 months of follow-up [54].

Contrasting outcomes of PRP-augmented 
marrow stimulation may be due to the varying 
amounts of specific factors in the PRP.  Dragoo 
et al. [56] have reported that the choice of com-
mercial PRP system causes a variance in factor 
concentration, and not all of the factors included 
in PRP are chondrogenic. PRP with high concen-
trations of white blood cells (leukocyte-rich) or 
red blood cells resulted in promotion of pro- 
inflammatory markers and significant synovial 
cell death, resulting in the destruction of cartilage 
extracellular matrix. Though further studies are 
needed to elucidate the impact of leukocyte-rich 
vs leukocyte-poor PRP, Dragoo postulates that 
removal of undesired factors, such as leukocytes, 
can impact local inflammation and enhance 
chondrocyte recovery [56, 57]. The deletion pro-
cess would, however, require additional FDA 
approval and regulatory guidelines due to 
“manipulation” of the PRP.

 Bone Marrow Aspiration Concentrate 
Injections

Mesenchymal stem cells (MSCs) are multipotent 
stromal cells that could differentiate into all cells 
of mesodermal origin, including chondrocytes. 
As the interest in MSC use in cartilage restora-
tion increases, bone marrow aspiration (BMA) 
has emerged as a preferred technique for the 
acquisition of MSCs. The harvest site for BMA is 
typically the iliac crest (Fig.  16.3) due to its 
greater MSC concentration when compared to 
femoral or tibial aspirates [58]. In a typical BMA 
specimen, stem cells account for only 0.001 to 
0.01% of nucleated cells in bone marrow [59]. 
Aspirate samples require concentration, usually 
through density-gradient centrifugation, in order 
to produce higher concentrations of MSCs. 
However, new innovations in harvesting methods 
via a novel needle system have been able to pro-
duce high MSCs numbers as well [60]. Bone 
marrow aspiration concentrate (BMAC) is then 
used for targeted injection of MSCs into joint of 
interest either as an isolated treatment or an aug-
mentation to surgical treatment, such as marrow 
stimulation.

In addition to MSCs, BMAC has also been 
found to have a valuable platelet component that 
contains high levels of growth factors and cyto-
kines, such as VEGF, PDGF, TGF-β, and bone 
morphogenic protein 2 and 7 (BMP-2, BMP-7) 
[61]. These bioactive factors are essential compo-
nents of BMAC and allow increased anabolic, 
signaling, and anti-inflammatory activity [42, 61, 
62]. Members of the TGF-β superfamily have 
specifically been suggested to play a major role 
in cartilage development [62, 63]. Several studies 
displayed TGF-β’s critical role for increased gene 
expression related to chondrocyte type II colla-
gen expression [62, 63]. Recently, BMP-7 has 
also been shown to be useful for the stimulation 
of chondrocyte proliferation, differentiation, and 
metabolism in animal models, making its 
 inclusion attractive for cartilage regeneration 
therapy [42, 64].

Fig. 16.2 PRP super clot generated on top of a micro-
fractured cartilage defect
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Currently, the evidence for the significance of 
BMAC enhancement of marrow stimulation in 
several animal models is promising [12]. Fortier 
et  al. treated 12 young adult horses with full- 
thickness chondral defects of the trochlear ridge 
with microfracture alone or BMAC-enhanced 
microfracture [65]. Arthroscopically, BMAC and 
thrombin were injected into the microfracture- 
treated defects. After 8 months, radiological and 
histological evaluations discovered a significant 
increase in defect filling, improved repair inte-
gration into the surrounding cartilage, and a sig-
nificantly increased type II collagen and 
glycosaminoglycan repair composition. 
Similarly, in goat models, Saw et al. [66] reported 
on the cartilage defects treated with either sub-
chondral drilling, drilling with intra-articular HA 
injection, or drilling with intra-articular injection 
of both HA and BMAC. At 6 months postopera-
tively, comparable findings were found between 
the subchondral drilling alone and HA arms, yet 
the HA and BMAC combination group displayed 
significantly improved proteoglycan content and 
repair integration.

Although a paucity of evidence exists in 
regard to the clinical outcomes of BMAC- 
augmented marrow stimulation for articular car-
tilage repair, there are some studies that have 
reported optimistic results. De Girolamo et  al. 
examined pain or adverse events in chondral 
lesions repaired with microfracture in combina-
tion with implantation of a type I/III porcine col-
lagen matrix and application of BMAC [67]. 

Clinically, no pain or adverse events were seen in 
patients at 6-month follow-up; however, these 
clinical outcomes were not compared to a nega-
tive control. In a cohort study by Gobbi et  al. 
[68], full-thickness cartilage defects of the knee 
were treated with microfracture or a HA-based 
scaffold plus BMAC (HA-BMAC). The cartilage 
defect was prepared in the same fashion between 
the two groups prior to introduction of the HA 
scaffold and BMAC.  At 2-year follow-up, the 
HA-BMAC group demonstrated a normal or 
nearly normal IKDC objective score in 100% of 
repairs, while the microfracture group obtained 
normal IKDC in only 64%. Moreover, HA-BMAC 
treated patients maintained a significantly 
improved knee function at 5  years and IKDC 
objective scores when compared with microfrac-
ture patient group. The improvement in long- 
term clinical outcomes suggests that BMAC may 
play a role in increased defect repair durability 
when compared to marrow stimulation alone. 
BMAC-enhanced microfracture has also been 
investigated in cartilage defects of the ankle. 
Hannon et al. [69] compared microfracture alone 
with BMAC-enhanced microfracture of talar 
defects in 34 patients, with improvements in the 
FAOS pain score and the short-form 12 general 
health questionnaire physical component sum-
mary (SF-12 PCS) in both groups postopera-
tively. The magnetic resonance observation of 
cartilage repair tissue (MOCART) score in the 
BMAC-enhanced microfracture group was sig-
nificantly higher than that in microfracture alone 

Fig. 16.3 An intraoperative image of (a) BMA harvest 
from the iliac crest. The BMA is prepared by (b) centrifu-

gation to concentrate the mesenchymal stem cells into 
BMAC. The BMAC is placed in (c) small syringes to ME 
injected at the site of marrow stimulation
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group, signifying better quality of tissue repair. 
Presently, the current evidence for BMAC used 
in conjunction with marrow stimulation is prom-
ising, yet it still requires high levels of evidence 
investigations to qualify as a standard of care.

 Adipose-Derived Mesenchymal Stem 
Cells

Adipose tissue contains MSCs referred to as 
adipose- derived mesenchymal stem cells (ASC) 
[70]. ASCs have been found to have endodermal, 
mesodermal, and ectodermal proliferative poten-
tial, making them useful aids in cartilage restor-
ative marrow stimulation procedures. ASCs 
stimulated by various bioactive factors, espe-
cially the TGF-β superfamily, have been shown 
to induce their differentiation and proliferation 
into a chondrocytic phenotype [71–73], and sev-
eral in vitro studies have demonstrated ASCs to 
have a potent capacity to fill animal model osteo-
chondral defects [74, 75]. ASCs are obtained via 
local harvest, typically via liposuction, in the 
abdominal region. Many orthopedic surgeons 
lack experience with liposuction techniques 
required for ASC harvest. Recently, however, 
Dragoo et  al. [76] have developed an entirely 
arthroscopic method of harvesting ASCs from 
the infrapatellar fat pad. This technique functions 
to remove barriers associated with other liposuc-
tion techniques. The ease of access, low harvest 
site morbidity, and comparatively higher stem 
cell concentrations make ASCs an attractive 
source of MSCs [70, 71].

Evidence for clinical outcomes of ASC- 
enhanced marrow stimulation (Fig. 16.4) is lim-
ited, but its potential is encouraging. In a level III 
evidence study, Kim et  al. reported on clinical 
outcomes on ASC-enhanced microfracture pro-
cedures compared to microfracture alone in varus 
ankle osteoarthritis patients. At 12-month follow-
 up, significant improvements in VAS and AOFAS 
scores, as well as better ICRS grades, were 
achieved after marrow stimulation enhanced with 
ASC injection, when compared with after mar-
row stimulation alone [77]. Additionally, in a 
prospective cohort study on osteochondral talus 

lesions, 50 ankles were treated with either mar-
row stimulation with concomitant injection of 
stromal vascular fraction containing ASC or mar-
row stimulation alone. The clinical outcomes, 
including the VAS, AOFAS, and Tegner scores, 
improved significantly in the ASC group when 
compared with the marrow stimulation exclusive 
group [78]. Interestingly, these authors also 
reported that patient age (≥46.1 years) and large 
lesion size (≥151.2 mm2) were significantly asso-
ciated with poor outcomes in conventional mar-
row stimulation, but not in the ASC group. This 
suggests that ASC augmentation may be a viable 
method to overcome these known barriers of con-
ventional marrow stimulation [78]. Currently, 
there are few randomized prospective studies that 
have examined ASC use in marrow stimulation, 
but in a recent prospective randomized compara-
tive trial by Koh et  al. [79], patients with full- 
thickness femoral condyle cartilage defects were 
randomly selected to receive ASCs with fibrin 
glue with concomitant microfracture treatment or 
conventional microfracture alone. At a mean clin-
ical follow-up period of 27.4 months, the mean 
KOOS pain and symptom subscores were signifi-
cantly more improved in the ASC group than 
with conventional microfracture technique alone. 
However, there was no significant difference in 
activity, sports, or quality-of-life subscores 
achieved by the addition of ASC to microfrac-
ture. Further randomized control trials and inves-
tigation into long-term clinical outcomes are 
required, but the addition of concomitant intra- 
articular ASCs to marrow stimulation techniques 
remains a promising therapeutic option for symp-
tomatic chondral lesions.

 Advancements in Marrow 
Stimulation Technique

 Nanofracture, PowerPick, and Drilling

Nanofracture represents an innovation of the ini-
tial microfracture technique where a device or 
small-diameter wire are preferentially used for 
drilling [80]. The 1 mm diameter needle allows 
deeper drilling of the subchondral bone (up to 
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9  mm), a more consistent uniform cylindrical 
shape of the entire perforation, and more accu-
rate drill depth [80]. Optimal subchondral bone 
perforation is an area of interest for many 
experts. Chen et  al. have reported that a drill 
depth of at least 6 mm, a depth standard micro-
fracture awls do not achieve, is required for the 
proper release of MSC [24]. These authors also 
demonstrated that increased drill depth was cor-
related with an increased percentage of type II 
collagen found in the fibrocartilage repair. The 
nanofracture technique also aligns itself with the 
recent increase emphasis on preservation of the 
subchondral bone architecture following pene-
tration. In a basic science study comparing 
microfracture to nanofracture in ovine models, 
Zedde et  al. demonstrated that nanofractured 
subchondral bone displayed better preservation 
of trabecular structures when compared with 
microfracture and that bone remodeling after 
nanofracture resulted in a trabecular structure 
remarkably similar to that of native subchondral 
bone (Figs.  16.5 and 16.6) [81]. There is cur-
rently a paucity in peer-reviewed literature com-
paring nanofracture to other cartilage repair 
procedures, but Tahta et al. [82] did demonstrate 
that the use of nanofracture achieved an improve-
ment in PROs of talus cartilage defect repairs 
equal to scaffold-augmented microfracture tech-
nique. Despite these optimistic findings, more 

clinical trials are currently required to elucidate 
the further use of nanofracture as a viable 
improvement over microfracture.

 Biocartilage

BioCartilage (Arthrex Inc., Naples, FL) is a novel 
technique that combines a dehydrated allograft 
cartilage extracellular matrix (ECM) scaffold and 

Fig. 16.4 (a) Fat containing adipose-derived stem cells is 
harvested from the abdomen via insertion of a thin- 
harvesting cannula. (b) The fat sample is then processed 

with a LIPOGEMS® device to isolate the lipoaspirate. (c) 
The resulting lipoaspirate is placed into several small 
syringes to be injected at the site of marrow stimulation

AU6

Fig. 16.5 Tip of nanofracture© needle after insertion into 
an ICRS grade IV cartilage defect. (Reprinted from 
Benthien and Behrens [80]. With permission from 
Springer Berlin Heidelberg)
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the addition of PRP (Fig. 16.7) [83]. The ECM is 
composed of type II collagen, proteoglycans, and 
growth factors, which are native components of 
articular cartilage [83]. Little peer-reviewed stud-
ies examining BioCartilage outcomes are avail-

able; however, a study by Fortier et  al. [84] 
reported that BioCartilage-treated knee lesions 
had significantly higher ICRS repair scores when 
compared with microfracture alone at 2, 6, and 
13 months postoperatively via repeat arthroscopy 

Superficial Zone
Transitional & Deep Zone

Collagen Fibers
Chondrocytes

Matrix Proteins
Tidemark

Calcified Cartilage

Subchondral Bone Plate

Subarticular Spongiosa

1 mm

9 mm

2 mm

2 mm

3 mm

Nanofracture vs. Microfracture

Fig. 16.6 Demonstrating the difference between the 
deeper nanofracture© (left) which reaches the subchondral 
bone plate more regularly, in a consistent cylindrical 

shape and at a more defined depth than microfracture 
(right). (Reprinted from Benthien and Behrens [80]. With 
permission from Springer Berlin Heidelberg)

Fig. 16.7 An intraoperative photograph of (a) a microfractured patellar cartilage defect and (b) the defect following 
repair with BioCartilage
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in equine models. Additionally, histology 
revealed BioCartilage-repaired defects had sig-
nificantly better deposition of hyaline-like type II 
collagen than the control defects, which is opti-
mal for repair [84].

 Conclusion

Marrow stimulation remains a popular treatment 
for isolated cartilage lesions with positive short- 
term patient-reported outcomes. However, due to 
the paucity of prospective comparative trials, 
poor long-term outcomes, and the potential wors-
ening of the underlying bone microarchitecture, 
the indications for marrow stimulation remain 
controversial. The addition of intra-articular PRP, 
BMAC, and ASCs as well as new technical 
advances may assist in overcoming marrow stim-
ulation weaknesses. In summary, additional pro-
spective comparative trials are required before 
marrow stimulation can be considered the treat-
ment of choice for isolated cartilage lesions in 
large weight-bearing joints.
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