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Abstract
The biomechanical properties of, and mechanical environment surrounding, the rotator cuff con-
tinue to be a research area of great interest as injury and failure of these tendons are among the 
most common of shoulder pathologies, with incidence increasing in older populations. Recent liter-
ature has refined our knowledge of the anatomy, the role of the various tendons in movement and 
shoulder stability, and structural and material properties of the human rotator cuff. Furthermore, 
animal models have characterized the effects of mechanical loading on rotator cuff properties, the 
biomechanical interactions among cuff tendons in uninjured and deficient rotator cuffs have been 
described, and more recent imaging studies have provided novel insights into the function of the 
rotator cuff in vivo. Research to advance our understanding of the biomechanical factors contribut-
ing to rotator cuff disease is needed, as the etiology, prognostic indicators, and reasons for treat-
ment failure are poorly understood. We summarize published biomechanical literature on the rotator 
cuff to provide a current perspective on potential mechanisms involved in cuff pathology.

Copyright © 2011 S. Karger AG, Basel

Rotator Cuff Failure in Biomechanical Literature

Although the epidemiology of rotator cuff tears is not well established, rotator cuff 
tears, either symptomatic or asymptomatic, approach a prevalence of 7–30% [1–12]. 
Moreover, rotator cuff tears pose a challenging problem with regard to clinical 
management and diagnosis as they can be symptomatic or asymptomatic, and can 
be accompanied by pain, loss of muscle strength, and range of motion deficits [1, 
13–18]. In contrast to the reported dissociation between symptoms and the presence 
of rotator cuff tears, cadaveric and animal models have shown an alteration in the 
biomechanics of the shoulder in the presence of tears [8, 19–23].

In a study of the spatially varying material properties of the human supraspinatus 
tendon, Lake et al. [24] showed a significant difference in the tensile modulus of the 
posterior portion of the tendon when compared to the medial and anterior portions. 
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Despite these differences, histological scores of degeneration did not correlate to their 
biomechanical findings. However, a study of normal versus torn supraspinatus ten-
dons found a significant increase in infiltration of mast cells and macrophages in torn 
tendons with mild to moderate tendinopathy [25]. This finding contradicts earlier 
studies that show degeneration of the tendon rather than infiltrate within the tendon 
[26, 27]. Interestingly, there is a greater cellular and vascular response in small tears 
of the rotator cuff, while large and massive tears are primarily degenerative in nature 
[28]. However, it is unclear whether the latter observations are applicable to both par-
tial and full- thickness tears, and whether these findings vary with tear location.

There exists a stress concentration within the articular side of the supraspinatus 
tendon in a finite element model [29]. This finding has since been corroborated 
in both physiologic [30–32] and pathologic states [32]. Sano et al. [30] used finite 
element analysis derived from MRI and histologic data to model the biomechani-
cal properties of intact tendon (fig. 1). They then modeled an articular, bursal, and 
intratendinous tear and show increased stress concentration at these levels [32]. 
Despite biomechanical data which suggest strain gradients within the rotator cuff 
tendon [20, 33], to date, clinical evidence does not demonstrate failure of the ten-
don proper in a specific location as the primary mechanism of failure. In revision of 
rotator cuff repairs, the anchor or the suture tendon interface is commonly the focal 
point of failure [34–36]. In tests of native humerus- tendon- muscle constructs in 
cadavera, insertion site failure or musculotendinous junction failure occurs before 
rotator cuff tendon tear [33]. This evidence suggests that, under conditions of uni-
axial tension applied along the tendon fibers, in its uninjured state, the rotator cuff 
tendon proper is biomechanically more robust than its bony insertion on the lateral 
side and its muscular junction on the medial side. Sano et al. [37] showed a nega-
tive correlation between the ultimate tensile strength of the supraspinatus tendon 
and the tendons’ histologic properties at the bony insertion. Sano also concludes 
that microscopic degeneration is more common at the insertion than in the middle 
portion (from lateral at insertion to medial at musculotendinous junction) of the 
supraspinatus. Finally, Fukuda et al. [38] postulated that intratendinous mechani-
cal shear forces may be responsible for early tendon defects. Itoi et al. [39] divided 
the supraspinatus tendon into thirds and noted that, despite a similar modulus of 
elasticity between the articular and bursal sides, the anterior portion of the tendon 
exhibited a significantly higher elastic modulus than that of the middle and poste-
rior thirds.

Impingement: Biomechanical Considerations

Neer and Poppen first described subacromial impingement in an intraoperative study 
of 400 patients with rotator cuff tears [40]. They postulated that the etiology of the 
rotator cuff tears in 95% of their patients was subacromial impingement on the cuff 
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by the anterior third of the acromion [41]. Subsequently, the shape of the acromion 
[42], the presence of arthritic changes in the acromioclavicular joint [43], and spurs 
on the acromion and distal clavicle [44] have been found to result in narrowing of the 
subacromial space.

It is likely that subacromial contact in and of itself is not detrimental, but a nar-
rowed acromiohumeral distance predisposes an individual to rotator cuff disease [41, 
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Fig. 1. Finite element results for tensile (a) and compressive (b) stress at abduction angles of 0° (A), 
30° (B), and 60° (C). Darker color denotes greater stress. Reprinted with permission from Elsevier 
[30].
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42, 45]. This point was most recently made in a meta- analysis of in vivo imaging of 
the rotator cuff with ultrasound [45]. Seitz et al. [45] identified five contemporary 
studies that compared the acromiohumeral space in patients with and without diag-
nosed rotator cuff tears and impingement. They concluded that patients with full-
 thickness rotator cuff tears have a significantly smaller acromiohumeral space than 
those without pathology.

The anatomic shape of the acromion is associated with the severity of rotator 
cuff disease with type III or hooked acromial shape having the highest penchant for 
pathology [42, 46, 47]. The slope of the acromion is another measure used to assess 
acromial shape, and has also been implicated in symptomatic impingement [48] and 
increased tendon compression [49, 50].

However, it is unclear whether impingement induces cuff damage or whether 
weakness, dysfunction, and fatigue or overuse of the rotator cuff lead to subacromial 
impingement (e.g., via the resulting superior humeral translation). Recent cadaveric 
evidence suggests that non- pathologic contact pressure between 0.04 and 0.11 MPa 
from 0 to 100° of flexion exists beneath the coracoacromial arch. Similarly, acromial 
contact pressure reached 0.43 MPa in flexion [51]. Contact occurred in otherwise 
grossly intact tendons devoid of pathologic changes. Although the authors did not 
present histologic or biochemical results for the tendons, Yamamoto et al. [51] sug-
gest that contact of the rotator cuff tendons with the coracoacromial arch is not nec-
essarily a pathologic phenomenon. A study evaluating the effect of acromioplasty 
on glenohumeral translation and rotator cuff contact pressure, even with complete 
resection of the coracoacromial ligament, showed a pressure of at least 0.02 MPa on 
the rotator cuff at all times [52].

Mechanical overuse of the supraspinatus was explicitly tested by Soslowsky et al. 
[53] by examining tendon alterations in a rat model of decline treadmill running. The 
tendon in their overuse model exhibited an increased cross- sectional area, hypercel-
lularity, and collagen disorganization. Biomechanically, maximum stress and elastic 
modulus were significantly lower in the overuse group when compared to cage con-
trol rats. Impingement of the tendons was not included in the study design, and yet 
these tendons showed signs of biomechanical and cellular degradation [53].

Schneeberger et al. [54] tested an alternative hypothesis of rotator cuff pathology 
in an in vivo rat model by producing impingement on the supraspinatus with surgi-
cally implanted plates and then analyzing the tendon grossly and histologically. They 
found that the tendons showed signs of bursal sided degeneration in every instance of 
simulated impingement, demonstrating that impingement may indeed have a detri-
mental effect on rotator cuff tendons.

Soslowsky et al. [55] used a combination of the aforementioned approaches by 
subjecting rats to the overuse model with the addition of simulated subacromial 
impingement with the use of an Achilles tendon allograft. They examined three 
groups of rats: an overuse, an impingement, and an overuse + impingement group. 
The authors found that both impingement and overuse had detrimental effects on 
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the supraspinatus. In addition, the combined group showed a significant increase in 
cross- sectional area and a significant decrease in maximum stress and elastic modu-
lus when compared to either of the individual groups.

Rotator Cuff Pathology: Age and Symptoms

A prospective clinical study of 411 patients found a tear in 23% of subjects with an 
increase in incidence that correlated directly with age. Specifically, 38% (52 of 136) 
of asymptomatic patients older than 70 had full- thickness tears appreciable on ultra-
sound [12]. This study along with MRI findings by Sher et al. [56] in asymptomatic 
patients of a younger cohort, suggest that tears in the rotator cuff, especially with 
advanced age, could be classified as ‘normal aging’. Moosmayer et al. [1] found the 
prevalence of rotator cuff tears to be 7.6% overall, and 15% in ages of 70–79, a smaller 
prevalence overall yet also an increase with age. Neer et al. [57] described three stages 
of rotator cuff lesions characterized by age: <25 years for stage I, between 25 and 40 
for stage II, and stage III for those >40. The stages correspond to the most common 
characteristics of impingement, with stage three including rotator cuff tears. Although 
heavily biased toward impingement as the primary cause of rotator cuff tears, Neer’s 
stages suggest that age is a component to rotator cuff pathology.

As a microscopic correlate, Kumagai et al. [58] found that elderly cadavera without 
tendon tears (52–90 years) were characterized by calcification, fibrovascular prolif-
eration and microtears in the tendon, and patients in a younger cohort did not dem-
onstrate these histologic findings.

Despite the increasing prevalence of RC tears with age, clinical symptoms do not 
always accompany a tear [2, 59, 60]. In fact, across all ages, there is still debate as to 
what factors cause symptoms. Based on imaging studies of symptomatic and asymp-
tomatic patients with rotator cuff tears, size of tear [2, 59, 60] and fatty infiltration 
[60] are indicators of symptomatic tears.

Karas et al. [3] recently reviewed the biomechanical effects of rotator cuff tears 
in cadaveric models. The in vivo biomechanics of the shoulder, however, whether 
in symptomatic or symptomatic patients, are altered in the presence of a rotator cuff 
tear based on electromyography and kinematics [61, 62]. In confirmed rotator cuff 
tears, muscle activation is increased when compared with non- pathologic shoulders. 
In asymptomatic subjects, the subscapularis had increased activity whereas, in symp-
tomatic subjects, the rotator cuff muscles associated with torn tendons had increased 
activity. Yamaguchi et al. [62] analyzed the three- dimensional kinematics of the gle-
nohumeral joint in patients with symptomatic and asymptomatic rotator cuff pathol-
ogy and found statistically significant humeral head migration in both groups, which 
suggests that symptoms do not result from a change in kinematics.

Results from translational scientific studies on the rotator cuff have led to an 
improved understanding of potential biomechanical mechanisms of cuff injury. The 
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reliability of ongoing and future work to more closely simulate clinically observed 
pathology will not only provide further insight into the etiology of rotator cuff dis-
ease, but also facilitate potential approaches for injury prevention, diagnosis and 
treatment. For example, it is possible that experimental methods such as applying 
fatigue loading until failure, or utilizing more complex loading directions/modes 
(e.g., superposing impingement with tensile loading of the tendon, or loading the 
tendon in more physiologic directions [63, 64]) may be required in cadaveric studies 
to produce pathology more consistent with clinical and/or imaging results (fig. 2). 
Furthermore, refinements of recent technological advancements such as arthroscopi-
cally insertable force probes [10, 65] for in vivo measurement of tendon forces as well 
as imaging methods for in vivo kinematic studies [9, 66] and soft tissue deformation 
analyses [67] will likely provide critical insight into the biomechanical environment 
of rotator cuff tendon and surrounding soft tissue stabilizers. Collectively, advances 
in our understanding of the in vivo, temporal biomechanical function of the rotator 
cuff has strong implications for rehabilitation protocols and guidelines for the design 
of tissue engineered constructs for healing and repair of RC defects.
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