A simple method to directly evaluate the lateral extension of the acromion: an anatomic study of 128 cadaveric scapulae

Trifon Totlis, MD, PhD\textsuperscript{a}, Anirudh K. Gowd, BS\textsuperscript{b}, Eamon D. Bernardoni, MS\textsuperscript{b}, Brian J. Cole, MD, MBA\textsuperscript{b}, Nikhil N. Verma, MD\textsuperscript{b,*}, Konstantinos Natsis, MD, PhD\textsuperscript{a}

\textsuperscript{a}Department of Anatomy and Surgical Anatomy, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
\textsuperscript{b}Division of Sports Medicine, Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA

\textbf{Background:} The lateral extension of the acromion from the glenohumeral joint is the critical variable that both the acromial index and critical shoulder angle reflect. The purpose of this study was to establish a simple and reproducible method to directly measure the lateral extension of the acromion that will be independent of patient demographic characteristics, scapular rotation, or other morphologic features of the shoulder.

\textbf{Methods:} This study used 128 unpaired cadaveric scapulae with a mean age of 69.4 ± 11.1 years (66 right and 62 left scapulae, 65 female and 63 male cadaveric specimens). The lateral extension of the acromion was measured from the supraglenoid tubercle to the most lateral point of the acromion with a digital caliper placed perpendicular to the scapula long axis. This distance was called the “lateral offset of the acromion.”

\textbf{Results:} The lateral offset was 2.62 ± 0.72 cm in men and 2.69 ± 0.73 cm in women. The offset was 2.61 ± 0.66 cm in right and 2.70 ± 0.78 cm in left scapulae. The offset in the group aged 46-60 years was 2.85 ± 0.76 cm; in the group aged 61-75 years, it was 2.62 ± 0.76 cm; and in the group aged 76 years or older, it was 2.54 ± 0.60 cm. No significant difference was found between any of the groups.

\textbf{Conclusions:} This study established a simple method to directly measure the lateral extension of the acromion based on the longitudinal axis of the scapula, which eliminates bias that may exist in the acromial index and critical shoulder angle from the position of the scapula and glenoid inclination. The lateral offset was found to be independent of sex, side, or age, limiting bias in a potential future clinical application.

\textbf{Keywords:} Acromial index; critical shoulder angle; rotator cuff tear; anatomy; cadaveric; lateral offset of acromion; normative data

The pathogenesis of rotator cuff tears (RCTs) is poorly understood and may include both intrinsic and extrinsic factors. Extrinsic factors that contribute to rotator cuff pathology are faulty posture, altered scapular or glenohumeral...
kinematics, posterior capsular tightness, and anatomic variations of the acromial or glenoid morphology. Many indices have been proposed to account for these anatomic factors as they relate to RCTs, such as the acromial index (AI) and critical shoulder angle (CSA).\textsuperscript{17,22} The AI, initially described by Nyffeler et al.,\textsuperscript{22} is the ratio of the distance between the glenoid plane and acromial plane (GA) to the distance between the glenoid plane and humeral plane (GH). The CSA is the angle formed by a line connecting the superior and inferior aspects of the glenoid and a line connecting the inferior aspect of the glenoid fossa to the lateral-most point of the acromion.

Both the AI and CSA have been correlated with shoulder pathologies.\textsuperscript{1,2,6,9,10,12,17,25,26} The lateral extension of the acromion from the glenohumeral joint is more commonly used as the critical variable involved in the assessment of the association between those 2 indices and rotator cuff pathology. Previous studies have shown that lateral acromial resection, in combination with arthroscopic acromioplasty, improves outcomes in the treatment of rotator cuff pathologies.\textsuperscript{16} Accurate measurement of this parameter will better indicate the need for these procedures.\textsuperscript{22}

The 2 indices that reflect the lateral extension of the acromion may be affected by scapular rotation during measurements or by the inclination of the glenoid.\textsuperscript{17,27} In addition, there is debate as to whether patient demographic characteristics, such as sex, age, and laterality, influence the AI and CSA.\textsuperscript{5,9,11,15,28}

The purpose of this study was to establish a simple and reproducible method to directly measure the lateral extension of the acromion in relation to the humeral head on an anteroposterior shoulder radiograph.\textsuperscript{22} The CSA, as proposed by Moor et al,\textsuperscript{17,18} relates the lateral acromial extension to the plane of the glenoid. This is measured as the angle between a first line connecting the inferior border to the superior border of the glenoid fossa and a second line connecting the inferior border of the glenoid to the inferolateral aspect of the acromion (Fig. 1).

Both the AI and CSA have been correlated with shoulder pathologies.\textsuperscript{1,2,6,9,10,12,17,25,26} The lateral extension of the acromion from the glenohumeral joint is more commonly used as the critical variable involved in the assessment of the association between those 2 indices and rotator cuff pathology. Previous studies have shown that lateral acromial resection, in combination with arthroscopic acromioplasty, improves outcomes in the treatment of rotator cuff pathologies.\textsuperscript{16} Accurate measurement of this parameter will better indicate the need for these procedures.\textsuperscript{22}

Figure 1 Measurements of acromial index (AI) and critical shoulder angle (CSA) on anteroposterior shoulder radiograph. The AI is the ratio of the distance between the glenoid plane and acromial plane (GA) to the distance between the glenoid plane and humeral plane (GH). The CSA is the angle formed by a line connecting the superior and inferior aspects of the glenoid and a line connecting the inferior aspect of the glenoid fossa to the lateral-most point of the acromion.

Figure 2 Measurement of lateral offset of acromion. The scapula was placed on a flat table with the longitudinal axis (an imaginary line connecting the superior and inferior scapular angles) perpendicular to the table margin. The lateral offset of the acromion was measured from the supraglenoid tubercle to the most lateral point of the acromion, with the digital caliper placed parallel to the table margin.

Methods

This was an anatomic study performed on cadaveric scapulae. Specimens having any evidence of fracture, surgery, postmortem damage, or arthritis, which would prevent accurate measurements, were excluded. The study sample included 128 unpaired dried human cadaveric scapulae, comprising 66 right and 62 left scapulae, with 65 female and 63 male cadaveric specimens. The donors had a mean age of 69.4 ± 11.1 years (range, 46-96 years). The medical history of the donors was unknown.

Each scapula was placed with its posterior surface lying on a flat table, having the longitudinal axis (an imaginary line connecting the superior and inferior scapular angles) perpendicular to the table margin. The lateral offset of the acromion was measured from the supraglenoid tubercle to the most lateral point of the acromion, with the digital caliper placed parallel to the table margin and therefore perpendicular to the longitudinal axis of the scapula (Fig. 2). All bone measurements were done by the same investigator using a digital caliper with a resolution of 0.001 cm (Mitutoyo, Kanagawa, Japan).
Statistical analysis

All analyses were conducted using SPSS software (version 19.9; IBM, Armonk, NY, USA). The Student $t$ test was used to examine for significant differences between the sexes and between the 2 sides of the body, whereas the 1-way analysis of variance test was used for the age groups. $P < .05$ was considered statistically significant.

Results

The lateral offset of the acromion from the supraglenoid tubercle was $2.65 \pm 0.72$ cm across all subsets. The lateral offset in men was $2.62 \pm 0.72$ cm, while that in women was $2.69 \pm 0.73$ cm ($P = .620$). The offset in right shoulders was $2.61 \pm 0.66$ cm, whereas that in left shoulders was $2.70 \pm 0.78$ cm ($P = .479$). The offset in the group aged 46-60 years was $2.85 \pm 0.76$ cm; in the group aged 61-75 years, it was $2.62 \pm 0.76$ cm; and in the group aged 76 years or older, it was $2.54 \pm 0.60$ cm ($P = .154$). These data are summarized in Table I. Figure 3 shows the distribution of the results. No significant difference was found in lateral offset within the sex, sidedness, or age groups.

Discussion

Previous studies that evaluated the lateral extension of the acromion from the glenohumeral joint focused on 2 shoulder indices, the AI and the CSA.\textsuperscript{2,6,9,12,21,25} This anatomic study established a simple method to directly evaluate the lateral extension of the acromion. The measurement was applied in 128 cadaveric scapulae and demonstrated that the lateral extension of the acromion is not affected by sex, side, or age.

Previous epidemiologic studies on radiographic parameters have been performed. Hamid et al\textsuperscript{7} measured the relationship between the AI and sex, age, and hand dominance. They found that the AI was statistically higher in women than in men ($0.705 \text{ vs } 0.682$, $P = .01$) but did not correlate with age or hand dominance. The diameter of the humeral head is a component of the AI and has been established to be different between the sexes.\textsuperscript{3,23} King\textsuperscript{13} found strong significance in the difference between the diameter of the humeral head between the sexes, with men having a greater diameter. This finding supports that the aforementioned sex discrepancy in the AI may be due to the wider diameter of the humeral head instead of variances in the acromial offset. Glenoid inclination, the angle from the vertical plane and the line connecting the superior and inferior aspects of the glenoid, affects the measurement of CSA and has demonstrated some correlation to sex, although this was statistically insignificant.\textsuperscript{5} Habermeyer et al\textsuperscript{8} also found no statistical difference in glenoid inclination between the sexes in a cohort of patients with osteoarthritis. The direct measurement of the lateral extension of the acromion performed in our study does not involve the humeral head diameter, is not based on the glenoid plane, and is not influenced by sex ($P = .620$).

Age groups (46-60 years, 61-75 years, and ≥76 years) and upper-extremity laterality also did not show any statistically significant differences in the lateral offset of the acromion ($P = .154$ and $P = .479$, respectively). Although shoulder morphology appears symmetrical,\textsuperscript{17,24} other morphologic characteristics of the shoulder change with age, such as acromial type.\textsuperscript{4,19,20} Since the lateral offset of the acromion is not affected by aging, a potential future correlation between this morphologic feature and shoulder pathology will not need any age correction.

The AI and CSA, which are used to represent the lateral extension of the acromion, may be affected either by scapular rotation during measurements or by the inclination of the glenoid. Malrotation of the radiographs by greater than 20°, albeit easy to recognize, was found to reduce the reproducibility of the CSA, although interobserver reliability was still high.\textsuperscript{17,24} Spieg et al\textsuperscript{15} concluded that magnetic resonance imaging had greater interobserver and intraobserver agreement by removing the rotational component to imaging. They reported that the mean CSAs measured were significantly different between radiographs and magnetic resonance imaging studies. Since CSA represents the relative

<table>
<thead>
<tr>
<th>Age group</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
<th>P value</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-60 yr</td>
<td>35</td>
<td>2.85</td>
<td>0.76</td>
<td>1.22</td>
<td>2.91</td>
<td>3.90</td>
<td>.154</td>
<td>One-way ANOVA</td>
</tr>
<tr>
<td>61-75 yr</td>
<td>49</td>
<td>2.62</td>
<td>0.78</td>
<td>1.15</td>
<td>2.66</td>
<td>3.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥76 yr</td>
<td>44</td>
<td>2.54</td>
<td>0.60</td>
<td>1.34</td>
<td>2.64</td>
<td>3.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$SD$, standard deviation; ANOVA, analysis of variance.
The relationship of the lateral extension and glenoid inclination, a downward-facing glenoid inclination may under-represent an overly extended acromion and vice versa. The AI also must depend on the glenoid inclination since the plane of the glenoid serves as a reference for all measurements.\textsuperscript{21} The direct measurement of the acromion lateral offset from the supraglenoid tubercle is independent of any other morphologic feature of the shoulder and radiographic parameter. The longitudinal axis of the scapula is defined as the longest dimension of the scapula, which connects the superior and inferior angles of the scapula.\textsuperscript{27} This axis was used as a reference plane to measure the lateral offset because it controls for scapular rotation. Thus, the measurement of the lateral offset of the acromion used landmarks (supraglenoid tubercle, most lateral point of acromion) and a reference plane (longitudinal axis) that were consistently identifiable to ensure reproducible measurements.

The relationship of the AI and CSA with shoulder pathology has been thoroughly studied.\textsuperscript{1,2,6,9,10,12,17,25,26} A reduced CSA has been associated with osteoarthritis, whereas most studies have found a positive correlation between a greater CSA or AI and RCTs.\textsuperscript{10,14,17,18} The CSA has been shown to best predict and differentiate cuff tear arthropathy, osteoarthritis, RCTs, impingement, and tendinitis calcarea from analysis of the area under the receiver operating characteristic curve.\textsuperscript{10} The incorporation of age into this predictive model improved specificity for all 5 pathologies above 70%, although sensitivity was poor for RCTs and impingement.\textsuperscript{10} However, the use of both indices in clinical practice is still limited. Meanwhile, the lateral extension of the acromion from the glenohumeral joint is more commonly used as the critical variable involved in the assessment of the association between those 2 indices and rotator cuff pathology.\textsuperscript{1} In the assessment of RCTs, a greater acromion lateral extension may be associated with an increased number of torn tendons and number of anchors required for repair.\textsuperscript{9} In addition, it may cause a reduction in the arthroscopic window for visualization of the articular margin\textsuperscript{1} and significantly increase the retear rate following rotator cuff repair.\textsuperscript{28} The measurement of lateral offset can influence the decision to perform lateral acromial resection in addition to a routine acromioplasty in the treatment of rotator cuff pathologies.\textsuperscript{16} Katthagen et al\textsuperscript{12} found lateral acromial resection in combination with anterolateral acromioplasty to be protective against RCTs because of decreasing the lateral extension of the acromion from a cadaveric, anatomic standpoint.

The main limitation of this study is that measurements were performed on cadaveric scapulae, while in clinical practice, they are performed on radiographs. Using a different method for the same anatomic measurement may not provide the same values. However, the finding that lateral extension of the acromion is independent of sex, side, or age is more important.

Figure 3  Histogram showing distribution of values of lateral offset of acromion in total sample (mean value, 2.65 cm).
than the absolute values found in this study. Because acromial extension is independent of sex, side, and age, the same relationship must be true for radiographic measurements of the lateral offset of the acromion. An additional limitation is that the medical history of the cadavers was unknown, and as a result, no clinical findings were directly related to the lateral offset of the acromion. Thus, it is impossible at the moment to evaluate the clinical utility of the lateral offset. Future studies are necessary to determine the lateral offset measurement on radiographs and explore any potential association with rotator cuff pathology or efficacy of rotator cuff treatments.

In vivo evaluation of the lateral offset would require the entire scapula to be included in the anteroposterior shoulder radiograph so that the scapular longitudinal axis can be identified.

**Conclusion**

The lateral extension of the acromion from the glenohumeral joint is the critical variable of both the AI and CSA. This study established a simple and reproducible method to directly measure this morphologic feature of the scapula—the lateral offset of the acromion—and provided normative data on a cadaveric sample. This measurement was not significantly associated with sex, side, or age, which appropriately limits bias in a potential future clinical application of the lateral offset including evaluations for RCTs and acromioplasty.

**Disclaimer**

The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

**References**


