Controlled treadmill exercise eliminates chondroid deposits and restores tensile properties in a new murine tendinopathy model

Rebecca Bell a, Jun Li b, Daniel J. Gorski c, Anne K. Bartels a, Elizabeth F. Shewman a, Robert W. Wysocki a, Brian J. Cole a, Bernard R. Bach, jr. a, Katalin Mikecz a, John D. Sandy c, Anna H. Plaas b, Vincent M. Wang a,∗

a Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States
b Department of Rheumatology/Immunology, Rush University Medical Center, Chicago, IL 60612, United States
c Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States

ARTICLE INFO

Keywords:
Tendinopathy
Collagen
Aggrecan
Gene expression
Mechanical loading

ABSTRACT

Tendinopathy is a widespread and disabling condition characterized by collagen fiber disruption and accumulation of a glycosaminoglycan-rich chondroid matrix. Recent clinical reports have illustrated the potential of mechanical loading (exercise) therapies to successfully treat chronic tendinopathies. We have developed a new murine tendinopathy model which requires a single injection of TGF-β1 into the Achilles tendon mid-substance followed by normal cage activity for 2 weeks. At this time, tendon maximum stress showed a dramatic (66%) reduction relative to that of normal controls and this persisted at four weeks. Loss of material properties was accompanied by abundant chondroid cells within the tendon (closely resembling the changes observed in human samples obtained intraoperatively) and increased expression of Acan, Col1A1, Col2A1, Col3A1, Fnt1 and Mmp3. Mice subjected to two weeks of daily treadmill exercise following TGF-β1 injection showed a similar reduction in tendon material properties as the caged group. However, in mice subjected to 4 weeks of treadmill exercise, tendon maximum stress values were similar to those of naive controls. Tendons from the mice exercised for 4 weeks showed essentially no chondroid cells and the expression of Acan, Col1A1, Col2A1, and Mmp3 was significantly reduced relative to the 4-week cage group. This technically simple murine tendinopathy model is highly amenable to detailed mechanistic and translational studies of the biomechanical and cell biological pathways, that could be targeted to enhance healing of tendinopathy.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Since effective treatment options for human tendinopathies are limited (Maffulli et al., 2010), the development of reliable in vivo animal models can improve our understanding of the disease process, thereby facilitating identification of novel therapeutic strategies. Three primary criteria in assessing the utility of such models for future clinical translation are (1) a reduction of tendon mechanical properties, as occurs in human tendinopathy (Arya and Kulig, 2010), (2) histopathologic features mimicking those of the human disease and (3) the amenability of the model for physiotherapy or biologic intervention.

A consistent feature of human tendinopathy is the accumulation of a chondroid matrix within the tendon body, as previously demonstrated by biochemical analysis (Corps et al., 2012; Samiric et al., 2009), histopathology (Kannus and Jozsa, 1991; Khan et al., 1999), and immunohistochemistry (Scott et al., 2008). Importantly, it appears that the chondroid accumulation is an injury response, rather than an adaptation to compression (Ralphs et al., 1992; Vogel and Peters, 2005), since there is marked upregulation of aggrecan expression in individuals with painful Achilles tendinopathy (Corps et al., 2006; de Mos et al., 2009). Furthermore, using a rat supraspinatus overuse model, Aitza et al. (2012) observed an increase in glycosaminoglycans (GAGs) in the tendon mid-portion following 8 weeks of downhill running. Hence, we hypothesize that strategies to remove GAG deposits from tendons, or retard their formation, represent clinically relevant therapies.

There is increasing evidence that eccentric loading protocols can effectively treat human tendinopathies (Ohberg et al., 2004; Silbernagel et al., 2011; van der Plas et al., 2012; Visnes and Bahr, 2007). Animal studies (Eliasson et al., 2012; Gelberman et al., 1986; Palms et al., 2002) have also demonstrated benefits of mechanical stimulation for tendon healing. While results from both clinical and bench studies highlight the importance of mechanobiologic stimulation, very little is known regarding the mechanisms through which this may occur (Sussmilch-Leitch et al., 2012).

The objectives of the current study were firstly, to develop a non-surgical murine tendinopathy model characterized by chondroid
accumulation and loss of tensile properties, and secondly, to determine the efficacy of controlled mechanical loading to reverse progression of tendinopathy. We utilized TGF-β1 injection to induce tendinopathy, as this growth factor has both been demonstrated to stimulate chondrogenesis in numerous tissue and cell culture models (Shintani and Hunsiker, 2007; Diederichs et al., 2012; Lorda-Diez et al., 2009; Morales, 1991) and is a critical biological factor translating mechanical overuse injury of tendon cells into a biological response (Maeda et al., 2011). We hypothesized that firstly, a single injection of TGF-β1 into the Achilles tendon results in tendinopathic changes which mimic human pathology and secondly that tendinopathic mice subjected to controlled exercise exhibit a reduction in chondroid deposits and a restoration of tensile properties.

2. Methods

2.1. Human studies

Intraoperative tendon specimens (IRB #11123301) were obtained from the proximal origin of the extensor carpi radii brevis (ECRB) and distal origin of the biceps brachii tendons from patients undergoing surgical debridement for painful tendinopathy.

2.2. Induction of murine tendinopathy

C57BL6 male mice (12 weeks old) were injected (28 G needle) into the mid-portion of the right Achilles tendon with 100 ng active TGF-β1 (PeproTech Inc) in 6 μL of 0.1% (v/v) BSA in saline. The study design included naïve (uninjured) controls, an acute response group (48 h post-injection), and mice which received cage or treadmill activity (Fig. 1).

2.3. Mechanical stimulation

At 24 h post-injection, mice began uphill (17°) treadmill running (Stoelting/Paul Lab) at 32 cm/s, 20 min/day, 5 days per week (Li et al., 2011) for 2 or 4 weeks.

2.4. Geometry and mechanical testing

The Achilles tendon–calcaneal complex was dissected and the calcaneus potted in methyl methacrylate. Tendon cross-sectional area (CSA) was measured using a precision caliper (for width) and a laser displacement sensor (for thickness), assuming a rectangular geometry (Wang et al., 2012). Material testing was conducted at a planar flexion angle of 45° (Wang et al., 2006) with the specimen in an isotonic saline bath at 37°C. Each tendon was preconditioned to 0.05 N, followed by pre-cracking (0.05–0.05 N at 0.1 Ns for 20 cycles), a five minute recovery in an unloaded state, a static stress relaxation test (5% strain at 2.5%/s, held for 600 s), and a load to failure test at 0.5%/s.

2.5. Histology and immunohistochemistry (IHC)

Following fixation, decalcification, and paraffin embedding, the Achilles tendon-bone complex was sectioned longitudinally and stained with Safranin O (Wang et al., 2012). The number of cells per 350 x 350 μm² field was counted using [image] (NIH), for each of four stained images per tendon specimen, by two investigators blinded to the treatment group. For IHC, deparaffinized sections were incubated with the following primary antibodies (10 μg/ml) overnight at 4°C: high molecular weight aggrecan core protein (anti-DLS, Plaza et al., 2007), ADAMTS (anti-KNG, Plaza et al., 2007), collagen I (Abcam, ab-34710) and collagen III (Abcam, ab-7778). Sections were counter-stained with methyl green.

2.6. Quantitative PCR (QPCR)

The tendon proper (excluding calcaneal insertion and proximal myotendinous junction) was dissected fresh and placed in RNAlater™ (Qiagen) at −20°C. For RNA isolation, 20 tendons, pooled for analysis of each experimental group, were combined in liquid nitrogen, fragmented in a Bissman Tissue pulverizer, and extracted in 1 ml of TRIzol™ (Life Technologies) by vortexing for 60 s. RNA was purified with an RNeasy Mini Kit™ (Qiagen) and yields of RNA were approximately 50 ng per tendon. cDNA was synthesized using the SuperScript First-Strand Synthesis Kit™ (Life Technologies) using 1 μg of RNA. All primers were from Life Technologies, Inc; Acan (Mm00454894_m1); Adams2 (Mm01441823_m1); Cdh1 (Mm00455995_g1); Cdt1 (Mm00801666_g1); Col2a1 (Mm01395635_m1); Col2a1 (Mm00800331_m1); Mmp3 (Mm01390295_m1); and F1n (Mm01258474_m1). Amplifications were performed in triplicate with an Applied Biosystems 7300 Real-Time PCR System as follows: 50°C, 2 min; 95°C, 10 min; 95°C, 15 s; 60°C 1 min; repeated 39 times (Velasco et al., 2011). Data was processed as ΔΔCt (relative to Cdh1) for each gene at each time point, to provide relative transcript levels and fold-change was calculated as 2−ΔΔCt relative to the ΔCt of the comparison group specified.

2.7. Statistical analysis

Biomechanical, cell counting, and gene expression results were compared across time points using one-way ANOVA with Tukey’s post-hoc tests (SPSS 17, IBM, Armonk, NY). To test our study hypothesis, at each time point, an unpaired, two-tailed Student's t-test was used to compare data from the cage and treadmill groups.

3. Results

3.1. Striking histopathologic similarities between human and murine tendinopathy

Images from naïve murine Achilles (Fig. 2A), 48 h following TGF-β1 injection (Fig. 2B), and normal human patellar tendon (Fig. 2I) exhibited the same, essentially GAG-free, linear organization of collagen fibers and cells. Typical images from TGF-β1 injected murine tendons illustrate that at both 2 (Fig. 2D) and 4 weeks (Fig. 2E and F), tendons showed pericellular and interfibrillar accumulation of GAG, an increase in chondrocyte-like cells, and a loss of parallel arrangement of collagen fibers in and around GAG-enriched areas. Of particular note, the development of these pathological features required the injection of TGF-β1, since injection of saline/BSA did not result in any marked changes in cell morphology or matrix appearance at 2 weeks (Fig. 2C). Histopathologic features of the affected 4-week murine tendons were also seen in tendinopathic human ECRB and biceps samples (Fig. 2G and H).

3.2. Decreased tensile properties following TGF-β1 injection and cage activity

At all times (48 h, 2 and 4 weeks) post-TGF-β1 injection, significant reductions in stiffness (~43%), maximum stress and
tensile modulus (greater than 53%) were seen, along with an increase in CSA of ~86% at 2 weeks (Fig. 3 and Table S1). There were no significant differences in stress relaxation or maximum load, despite a trend towards an increase in stress relaxation at 4 weeks \((p=0.07) \), and a trend towards a decrease in maximum load at 48h and 4 weeks \((p=0.09) \).

3.3. Effect of TGF-β1 injection and cage activity on gene expression

The ΔCT values for naïve mice (Table 1) indicate that the order of transcript levels is \(\text{Col1a1} > \text{Fn} > \text{Col2a1} > \text{Acan} > \text{Col2a1} \) which appears to be consistent with the matrix composition of normal midsubstance tendon. Furthermore, consistent with known effects of TGF-β1 on both chondrogenic and fibrogenic signaling in dermal fibroblasts (Velasco et al., 2011), the expression of matrix genes at all time points (except for \(\text{Col3a1} \) at 4 weeks and \(\text{Col2a1} \) at 48h), were significantly elevated \((p<0.05) \) relative to naïve tendons.

The fold-change in expression of fibrogenic genes (Fig. 4) showed that the patterns for \(\text{Col1a1}, \text{Col3a1} \) and \(\text{Fn} \) were similar, with limited activation by TGF-β1 at 48 h, peak activation at 2 weeks and a trend toward reduction to naïve levels at 4 weeks. However, the activation of chondrogenic genes appeared to be relatively delayed, with a progressive increase in \(\text{Col2a1} \) expression up to 4 weeks post-injection, and the fold-activation of \(\text{Acan} \) expression being markedly higher than that for fibrogenic genes at both 2 weeks and 4 weeks.

3.4. Treadmill exercise following TGF-β1 injection increases tensile properties and alters gene expression

Two weeks following injection, similar mechanical properties were noted between cage and treadmill exercise groups (Fig. 5 and Table S2). Notably, however, exercise for 4 weeks was effective in restoring biomechanical properties (Table S2). Specifically, it led to recovery in maximum load, stiffness, maximum stress and tensile modulus \((p<0.04 \text{ in all cases, relative to 2 weeks}) \).

At 2 weeks, relative to no exercise, there was a minor, but significant \((p<0.05) \) reduction in the expression of \(\text{Col1a1} \) and \(\text{Col2a1} \), an increase \((p<0.05) \) of \(\text{Col2a1} \) and \(\text{Fn} \), expression, and no significant change in \(\text{Acan} \) expression (Fig. 6). Following 4 weeks of exercise, there were further marked changes in gene expression. Firstly, relative to cage activity, at 4 weeks there was a 10-fold reduction in the expression of \(\text{Col1a1} \) \((p=0.014) \) and a 200-fold reduction in \(\text{Col3a1} \) \((p<0.0001) \). Moreover, the high expression of \(\text{Col2a1} \) and \(\text{Acan} \) seen with exercise at 2 weeks was reduced by \(~25\text{-fold} (p=0.0004) \) and \(~12\text{-fold} (p<0.001) \) respectively at 4 weeks. The effect of treadmill exercise was also evident in the cellularity of the injected tendons. Naive tendons had 305 ± 33 cells per unit area, which was increased by approximately 1.7-fold \((519±9) \) and 2.1-fold \((652±95) \) at 2 weeks and 4 weeks, respectively, in mice maintained at cage activity. However, with treadmill exercise the corresponding increases were significantly lower at 1.3-fold \((396±18, p<0.0001) \) at 2 weeks and 1.6-fold \((495±56, p=0.008) \) at 4 weeks.
3.5. Effects of TGF-β1 Injection and treadmill exercise on Adamts5 and Mmp3 expression

The exercise-dependent reduction in gene expression seen between 2 and 4 weeks (Fig. 6) was also evident for Adamts5 and Mmp3 (Fig. 7). Without exercise, Adamts5 expression was not markedly affected at any time, whereas Mmp3 was activated ∼25-fold at 48 h and further activated to ∼110-fold after 2 and 4 weeks. Exercise for 2 weeks had no major effect on expression of either gene, however exercise for 4 weeks decreased Adamts5 (p=0.003) and Mmp3 expression (p=0.003).

3.6. Effects of TGF-β1 injection and treadmill exercise on the abundance of collagens I and III, aggrecan and ADAMTSS

The major increase in Col1α1, Col3α1 and Acan expression following 2 weeks of cage activity was reflected in increased cell-associated staining (Fig. 8, Figs. S2–S4). The absence of change in Adamts5 expression at 2 weeks was nonetheless accompanied by a marked increase in protein staining. Conversely, the decreased expression of these genes seen after 4 weeks of exercise (Figs. 6 and 7) did not appear to markedly alter the abundance of these components (Fig. 8 and Fig. S5).

3.7. Effects of TGF-β1 injection and treadmill exercise on cell shape and distribution of collagens I and III, aggrecan and ADAMTSS

The staining for all components except collagen I was primarily in the pericellular space, suggesting that the IHC procedure detects newly synthesized molecules (Li et al., 2012) (Fig. 8 and Fig. S2–S5). For collagen I, staining was also widely distributed throughout the matrix (Fig. 8 and Fig. S2), indicating that both new and resident molecules were detected. In the naïve tissue, collagen I staining was robust throughout the matrix and in the vicinity of individual cells, whereas aggrecan was detected as a diffuse pericellular coat surrounding groups of tenocytes. It is

Table 1
Effect of TGF-β1 Injection and cage activity on gene expression.

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>Col1α1 ΔCT</th>
<th>Col3α1 ΔCT</th>
<th>Col4α1 ΔCT</th>
<th>Fn1 ΔCT</th>
<th>Acan ΔCT</th>
<th>Adamts5 ΔCT</th>
<th>Mmp3 ΔCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>-0.14(0.16)</td>
<td>16.65(0.39)</td>
<td>4.04(0.07)</td>
<td>1.38(0.03)</td>
<td>15.61(0.61)</td>
<td>7.28(0.07)</td>
<td>11.35(0.29)</td>
</tr>
<tr>
<td>Acute p*</td>
<td>-1.61(0.38)</td>
<td>16.95(0.64)</td>
<td>2.08(0.19)</td>
<td>0.037</td>
<td>0.31(0.11)</td>
<td>0.0026</td>
<td>10.56(0.08)</td>
</tr>
<tr>
<td>2 weeks p*</td>
<td>-5.13(0.01)</td>
<td>12.28(0.15)</td>
<td>0.0099</td>
<td>-0.32(0.42)</td>
<td>0.0028</td>
<td>0.43(0.43)</td>
<td>0.0183</td>
</tr>
<tr>
<td>4 weeks p*</td>
<td>-3.52(0.31)</td>
<td>10.90(0.38)</td>
<td><0.00001</td>
<td>3.98(0.16)</td>
<td>0.215</td>
<td>0.30(0.16)</td>
<td>0.0068</td>
</tr>
</tbody>
</table>

Data presented are mean values, with standard deviation in parentheses.
* p-values represent comparisons to ΔCT of naïve samples.
notable that there is staining for aggrecan in naive tendons, despite the very low, but detectable, transcript levels. Aggrecan is also present in naive mature mouse FDL tendon, as shown by Western analysis (Wang et al., 2012) suggesting that it largely represents molecules synthesized and retained during development and maturation of the tendon.

Conversely, collagen III and ADAMTS5 were not detected in naive tendons. At 48 h after TGF-β1 injection there was a robust
increase in pericellular staining for both collagen III and ADAMTSS, but no clear change for either aggrecan or collagen I. Of interest, the increase in ADAMTSS staining occurred in the absence of a change in expression, suggesting that post-translational events control its tissue abundance.

After 2 weeks of cage activity, collagens I and III, aggrecan and ADAMTSS all showed increased staining in the cell-associated matrix (Fig. 8 and Figs. S2–S5), which was less evident after 2 weeks of treadmill exercise. The most notable difference between cage and exercised groups was the shape and organization of the cells (Fig. 8). Cage activity for 2 or 4 weeks resulted in groups of rounded cells, with enlarged and rounded nuclei, and with each cell surrounded by its own organized pericellular matrix. In contrast, treadmill exercise prevented the appearance of such chondrogenic groups at both times, such that resident cells exhibited the flat nuclei and elongated tenocyte morphology seen in naïve tendons. Moreover, due to the lack of an organized pericellular matrix, these elongated cells appeared to be interconnected and directly associated with the adjacent collagen fibers. The overall abundance and distribution of ADAMTSS protein under each condition (Fig. S5), was compared to staining for the aggreganase product, G1-NITEGE (Fig. S6). Both antigens showed an increased abundance in TGF-β1-injected tendons, and while the ADAMTSS was confined to the cells, the G1-NITEGE was also abundant in the tendon matrix. However, many more cells stained for G1-NITEGE than ADAMTSS, suggesting the activity of other aggreganases in the tendon.

4. Discussion

We have developed a murine model of tendinopathy that closely mimics the human pathology, and is also amenable to testing new therapeutic interventions. Firstly, the impairment of
mechanical properties (Fig. 3) is consistent with the finding that human Achilles tendinopathy results in inferior mechanical properties (Arya and Kulig, 2010). Secondly, histopathologic findings such as hypercellularity, chondroid deposition and collagen disorganization, strongly resemble human tendinopathies (Fig. 2). Thirdly, activation of aggrecan gene expression in the model (Figs. 4 and 6) has also been reported in human Achilles tendinopathy (Corps et al., 2006; de Mos et al., 2009). Perhaps the most important authentication of the model is the finding that controlled exercise can reverse over-expression of Acan, Col1a1, Col2a1 and Col3a1 and essentially eliminate chondroid accumulation. Moreover, this is accomplished by full recovery of tendon tensile properties, which supports clinical outcomes of exercise regimens (Silbermagel et al., 2011) and permits future quantitative therapeutic studies.

One advantage of this novel model is that tendinopathy is induced simply by injection of TGF-β1 into the midsubstance. The rationale for this derives from both clinical and bench studies indicating that excess active TGF-β1 in tendons is pathogenic. Analysis of tendinopathic Achilles (Pingel et al., 2012) showed increased expression of TGF-β1 associated with increased cellularity and collagen disorganization. Further, treatment of repair sites with antibodies to TGF-β1 (Chang et al., 2000) potentiated repair, whereas TGF-β1 generated by tendon transection was pathogenic (Maeda et al., 2011).

In our model, tensile properties correlated with changes in cell morphology, gene expression and abundance and localization of matrix proteins and ADAMTS5 (Fig. 8). The relationship between these parameters and tendinopathy was most apparent when comparing tendinopathic with exercised mice. At 2 weeks, the lowest values of maximum stress were observed (Fig. 3), and coincided with high abundance of chondroid cells (Fig. 8) and highest expression of Acan, Col1a1, Col2a1 and Fn (Fig. 4). Further, in the absence of exercise these abnormalities remained largely unchanged. However, in mice exercised for 4 weeks, maximum stress recovered to naive levels, chondroid cells were reduced (Fig. 8) and expression of Acan, Col1a1, Col2a1 and Col3a1 essentially returned to levels of naive tendon (Fig. 6). Moreover, exercise reduced the expression of Mmp3 to near naive levels and expression of ADAMTS5 to levels well below naive (Fig. 7). We conclude that it is the reduction in expression between 2 and 4 weeks, of all genes examined, which appears to be responsible for the reparative effect of 4 weeks of exercise.

Our findings are consistent with the beneficial effects of loading on healing of transplanted rodent Achilles (Andersson et al., 2009; Palmes et al., 2002; See et al., 2004; Virchenko and Aspemberg, 2008). In addition, 3–12 months of exercise has been shown to eliminate pain and immobility in Achilles tendinopathy patients for up to 3–5 years (Ohberg et al., 2004; Silbermagel et al., 2011; van der Plas et al., 2012), with one study (Verrall et al., 2011) noting that only 6 weeks of exercise was required.

Our data strongly suggest that loss of tendon mechanical properties results directly from the presence of chondrogenic cells, and their formation of aggrecan-rich deposits. This is supported by our finding (Wang et al., 2012) that flexor digitorum longus tendons of Adamts5−/− mice are enriched in pericellular aggrecan and exhibit inferior material properties relative to wild-type controls. Moreover, equine suspensory ligaments which have lost mechanical strength are populated with chondroid cell groups in an aggrecan-rich matrix (Plas et al., 2011). This general theme is also consistent with observations made on mid-portion Achilles tendinotic lesions, which were found to have increased glycosaminoglycan staining, an increase in rounded cell nuclei and a gene expression pattern characteristic of fibrochondrocytes (de Mos et al., 2009).

Finally, if accumulation of a chondroid matrix in the tendon midsubstance is responsible for the pathologic loss of tensional...
properties, it seems logical to develop therapies which can quickly remove the abnormal matrix and also prevent its reformation in the long-term. The demonstration here that controlled exercise can rapidly achieve chondroid matrix removal, should stimulate further research into the specific biomechanical transduction mechanisms involved.

Conflict of interest statement

All authors acknowledge that they have nothing to disclose with regard to financial or personal relationships with other individuals or organizations that could appropriately influence the work presented herein.

Acknowledgment

This study was supported by the Charles J. and Margaret Roberts Trust Fund (RUMC) and the Katz Rubschilder Endowment for OA Research (RUMC).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jbiomech.2012.10.020.

References

