
Graft Tensioning During Knee
Ligament Reconstruction:
Principles and Practice

Abstract

Failure to correctly tension grafts may overconstrain or
underconstrain the knee, potentially predisposing the patient to
deteriorating clinical and/or radiographic results over time. Knee
ligament reconstruction requires a fundamental understanding of
native anatomy, ligament biomechanics, and principles of graft
tensioning. A successful strategy for graft tensioning takes into
account the specific biomechanics of the ligament or ligaments in
question, the mechanical properties of the graft selected, the
chosen fixation method, the selected tensioning method (ie,
manual or mechanical), and the overall goal of the reconstruction
(ie, isometry versus anisometry).

Knee ligament reconstructions are
among the most commonly per-

formed orthopaedic surgeries.1 De-
spite the widespread utility of these
procedures, variation exists regard-
ing appropriate intraoperative graft
tensioning.2-9 Although clinical evi-
dence is largely equivocal or lack-
ing,5,8 the theoretic implications of
improper graft tensioning are sub-
stantial, potentially leading to sub-
optimal clinical and radiographic
results over time. Graft underten-
sioning could lead to residual laxity,
with a graft that behaves biomechan-
ically similar to a ligamentously defi-
cient knee.7 Conversely, graft over-
tensioning can lead to flexion
contracture, increased ligamentous
stress, graft breakdown, subluxation
of the tibia, and increased articular
contact pressures.2,10-15

To optimize graft tensioning for
knee ligament reconstruction, the
surgeon must have a thorough ap-
preciation for native knee anatomy,
biomechanics, and kinematics. It is
critical to understand the specific

mechanical properties of the selected
graft and fixation method and to de-
termine the biomechanical goals of
the reconstruction.

Biomechanical Basis of
Graft Tensioning

Anatomy
A well-executed knee ligament re-
construction should restore the pa-
tient’s native anatomy. Although the
details of footprint and bundle anat-
omy are beyond the scope of this re-
view, it must be understood that
graft tensioning is immaterial if pri-
mary fixation points are nonana-
tomic. For example, nonanatomic
vertical anterior cruciate ligament
(ACL) grafts placed superior or
proximal to the femoral footprint
fail more frequently, predisposing the
knee to greater anterior laxity and
loss of flexion.16 The surgeon must
first choose the anatomic target
structure to restore. Subsequent graft
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tensioning is dependent on replicat-
ing the specific biomechanical func-
tion of that ligament or bundle to
best recreate native knee kinematics.

Isometry and Anisometry
To develop a rationale for appropri-
ate graft tensioning, the surgeon
must understand several key biome-
chanical concepts. Knee ligaments
are divided into isometric and aniso-
metric structures. Isometric liga-
ments are of equal length and ten-
sion regardless of the angle of knee
flexion because the distance between
their origin and insertion sites does
not change with knee flexion. As-
suming anatomic positioning in an
isometric graft, the angle of knee
flexion at the time of tensioning
should not affect the kinematics of
the reconstruction.

In anisometric structures, such as
the ACL and its bundles,11,17 the pos-
terior cruciate ligament (PCL) and its
bundles,3 and the posterolateral cor-
ner of the knee (PLC),18-20 the length
and tension of the construct changes
with knee flexion. For instance,
placement of the femoral footprint at
the roof of the notch is not only
nonanatomic, but it also results in
anisometric reconstruction.21 This
can be easily demonstrated during
ACL reconstruction (ACLR) by flex-
ing and extending the knee after fem-
oral fixation; graft recession in the
tibial tunnel is noticeable during ex-
tension. Therefore, the angle of flex-

ion at the time of ligamentous ten-
sioning is extremely important and
will affect the biomechanical behav-
ior of the reconstruction. For exam-
ple, the posterolateral bundle of the
ACL is physiologically tense in ex-
tension and lax in flexion.22 If this
ligament is tensioned in extension,
when the origin and insertion sites
are farther apart, then relative liga-
mentous laxity will be experienced
when the knee is brought into flex-
ion, as occurs with native kinemat-
ics. However, if this ligament is ten-
sioned in flexion, when the native
ligament is less tense and shorter,
then graft tension when the knee is
brought to extension will exceed na-
tive ligament tension, which may
lead to stiffness, flexion contracture,
or graft attenuation. We generally
recommend tensioning at the posi-
tion of maximum physiologic ten-
sion to recreate native laxity. Under-
standing anisometry allows the
surgeon to choose the appropriate
tension angle, thus preserving range
of motion while maximizing knee
stability.

Biomechanical
Considerations in Graft
Selection
A variety of grafts has been used for
knee ligament reconstruction. These
graft choices are differentiated by
their biomechanical properties, most
notably their stiffness and viscoelas-
tic activity. With tensile forces, stiff-

ness is defined as force per unit area
of lengthening. A graft with a higher
stiffness value requires more force to
create the same degree of lengthen-
ing. Of the commonly used grafts,
bone–patellar tendon–bone (BPTB)
grafts have the greatest stiffness (Fig-
ure 1). Because BPTB grafts are
stiffer, less tension is required to re-
create normal kinematics. With a less
stiff graft, more stretch is experi-
enced with regular knee motion. This
may be perceived by the patient as
increased laxity. To avoid this prob-
lem, greater tension must be applied
at the time of initial fixation. For ex-
ample, in cadaver knees, the tension
requisite to recreate anatomic knee
ACL tension is 16 N for BPTB con-
structs and 38 N for the doubled,
non–pre-tensioned semitendinosus
tendons.29 In clinical study, a recent
meta-analysis demonstrated postop-
erative laxity, defined as a KT-1000
arthrometer (Medmetric, San Diego,
CA) side-to-side difference of >3
mm, to be less prevalent in patients
who receive BPTB compared with
those who receive hamstring grafts.1

This less prevalent laxity may be be-
cause of the combination of stiffness
and stress relaxation phenomena.
These results have led several au-
thors to suggest that hamstring grafts
should be more highly tensioned
than BPTB grafts to avoid postopera-
tive excess laxity.5,30

Viscoelastic activity is another crit-
ical concept in graft selection. Vis-
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coelastic activity is defined as the
nonlinear, time-dependent change in
strain (ie, change in length over unit
length) in response to a constant
stress (ie, force per unit area). Creep
and stress relaxation are important
types of viscoelastic behavior. These
refer, respectively, to the permanent
and nonpermanent lengthening of a
ligament in response to axial tension.
Because of a ligament’s viscoelastic-
ity, the tension in a ligament at the
time of intraoperative tensioning
may differ substantially from the ten-
sion on that structure during physio-
logic load after equilibration. For ex-
ample, hamstring grafts exhibit
viscoelastic behavior and postopera-
tive graft stretching. Semitendinosus
and gracilis grafts loaded at 65 N for
15 minutes lose up to 50% of their
original tension, whereas primate pa-
tellar tendons loaded at an average
of 50 N for 10 minutes lost only a
maximum 30% of their original ten-
sion.28,31 In a cadaver ACLR study of
doubled hamstring tendons, more than
half of the tendon tension was lost, and
KT-1000 translation notably increased
in response to intraoperative knee cy-
cling, with KT-1000 values of 5.8 mm
for the intact knee, 8.1 mm for the re-
constructed knee, and 10.5 mm for the
post-cycled knee.32

Pre-tensioning the graft may pre-
vent ligament lengthening, loss of
tension, and development of postop-
erative laxity. An in vivo study of
quadrupled semitendinosus/gracilis
grafts showed that pre-tensioning
with 50 intraoperative flexion/
extension cycles from zero degrees to
110° decreased lengthening by 7.7
mm.33 In vivo lengthening of >0.5
mm has been demonstrated in BPTB
grafts intraoperatively with similar
cycling.34 These findings suggest that
pre-tensioning may help reduce the
development of postoperative laxity,
especially in hamstring grafts. Clini-
cal trials are lacking, however.

The literature supports pre-

tensioning of soft-tissue allografts
and autografts. Our practice is to use
a graft tensioning board, tensioning
the graft with maximum one-hand
pull. The graft remains on this board
for the portion of the operation be-
tween harvest and graft passage. The
rate of tension loss is lower in BPTB
grafts, obviating the need for pre-
tensioning. Alternatively, fixing the
femoral side and manually overten-
sioning the tibial side with repetitive
cycling of the knee through a com-
plete range of motion can dynami-
cally pre-tension a graft.4,5,7,8,11,25,32,33

Biomechanical
Considerations in Fixation
Method
Graft fixation strength varies sub-
stantially between fixation types
(Table 1). Differences in fixation
stiffness can reach an order of mag-
nitude: 18 N/mm for the EndoButton
(Smith & Nephew, Memphis, TN)/
suture post combination to 269

N/mm for the interference screw/
WasherLoc (Biomet, Warsaw, IN)
combination.14 In clinical practice,
these variations may manifest as dif-
ferences in postoperative laxity. In
one series of 60 nonrandomized (ie,
by order of appointments instead of
by prepared, sealed, opaque en-
velopes) patients who underwent
ACLR with hamstring grafts, there
was a difference in objective radio-
graphic outcomes depending on fixa-
tion with interference screw versus
transcondylar cross-pins.33 The use
of aperture fixation (ie, BPTB with
intra-articular screw fixation) versus
suspensory fixation (ie, cortical but-
ton for quadrupled hamstring grafts)
may increase overall construct stiff-
ness, may allow for earlier and ag-
gressive range of motion, and may
contribute to decreases in postopera-
tive laxity.35 Suspensory fixation also
may subject grafts to the so-called
windshield wiper effect: because of
greater distance between the fixation

Stiffness for various grafts used in anterior cruciate ligament (ACL)
reconstruction. Data sources: bone–patellar tendon–bone,23 quadrupled ham-
string,24 doubled semitendinosus,24 quadriceps tendon,25 doubled gracilis,24

doubled tibialis anterior,26 native ACL,23 Achilles tendon,27 semitendinosus,28

gracilis,28 and tibialis anterior.26

Figure 1
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point and the joint, the graft can
move back and forth within the tun-
nels during motion cycles, poten-
tially increasing laxity over time. As
a rule, aperture fixation methods
avoid problems related to the wind-
shield wiper effect from micromotion
by providing secure intra-articular
fixation at the anatomic origin and
insertion of the graft.36

An important caveat of tibial aper-
ture fixation is the difficulty of hard-
ware removal in a revision situation.
If a surgeon chooses to use a con-
struct with less stiff fixation, then su-
praphysiologic tension may be re-
quired to reproduce physiologic
laxity. Use of high-stiffness graft and
fixation methods requires lower in-
traoperative tension to reach the de-
sired native knee ligament tension.14

In general, time zero graft fixation
parameters with most available fixa-
tion devices exceed physiologic loads
in the early postoperative period,
leading to a very low incidence of re-
ported early clinical failures.

Method of Tensioning
Several devices have been developed
to aid surgeons in the application
and measurement of graft tension at
the time of fixation. These include

the Tension Isometer (Medmetric)
Graft Tensioner (Arthrotek, Warsaw,
IN), and the Intrafix device (DePuy
Mitek, Norwood, MA). The maxi-
mum tension applied with a single
hand pull by a sports medicine sur-
geon is 99 N.37 In a cadaver study,
hand tensioning versus device ten-
sioning to 110 N did not affect post-
fixation laxity.38 Clinical studies that
compare these devices with hand ten-
sioning are lacking. If a surgeon de-
sires to tension to >100 N, a device
may be recommended. In addition, if
the surgeon wishes to reproducibly
tension to a submaximal single hand
pull—which may be difficult to reli-
ably reproduce—a tensioner may be
recommended. Although these de-
vices may improve the reproducibil-
ity of tension applied, no biomechan-
ical or clinical evidence indicates that
there is clinical benefit to the use of a
tensioning device. We prefer using a
single hand-pull in the place of a ten-
sioning device, even though clinical
evidence to support this preference is
lacking.

Biologic Response to Graft
Tension
Several studies have examined the bi-
ologic effects of tension on the graft

itself.15,39,40 In a canine model, in-
creasing tension within the native
ACL from baseline tension to >20 N
baseline tension led to focal degener-
ation, increased vacuolization, more
coarse and less oriented collagen fi-
bers, and a significant decrease in
tensile strength at 12 weeks com-
pared with native tendons.15 In a ca-
nine BPTB ACLR model comparing
1 N to 39 N of tension, increased
tension caused myxoid degeneration,
poor vascularity, and nonstatistically
significant decreases in load-to-
failure strength at 3 months.40 Con-
versely, in a rabbit BPTB ACLR
model comparing tensions of 1 N,
7.5 N, and 17.5 N, increased tension
caused no difference in cellularity,
cell nucleus volume, or vascularity
after 32 weeks.39 These results sug-
gest that supraphysiologic tendon
tension may lead to detrimental bio-
logic tendon changes, whereas ten-
don tension within normal range
likely does not have similar effects.
The clinical correlation of these find-
ings in humans is unknown. Sur-
geons should be aware that over-
tensioning may have a biologic
consequence that is currently poorly
understood.

Table 1

Fixation-type Stiffness in Anterior Cruciate Ligament Reconstruction (in N/mm)

Femoral
Fixation

No. 5 Sutures
Tied to Post at

70 N/mm
Double Staples

at 174 N/mm

One 20-mm
Washer at
192 N/mm

Two Tandem
Washers at
318 N/mm

Metal Interfer-
ence Screw
at 340 N/mm

WasherLoca at
506 N/mm

EndoButtonb at 24
N/mm

18 21 21 22 22 23

Mitekc anchor at
26 N/mm

19 23 23 24 24 25

Bone mulch screw
with bone com-
paction at 575
N/mm

62 134 144 205 214 269

a Biomet, Warsaw, IN
b Smith & Nephew, Memphis, TN
c DePuy Mitek, Raynham, MA
Adapted with permission from Karchin A, Hull ML, Howell SM: Initial tension and anterior load-displacement behavior of high-stiffness anterior
cruciate ligament graft constructs. J Bone Joint Surg Am 2004;86(8):1675-1683.
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Clinical Approach to Graft
Tensioning

Anterior Cruciate Ligament

Native Kinematics
Understanding the biomechanical
properties of the native ACL helps
guide reconstruction. The native
ACL has a stiffness of 182 N/mm
and a load-to-failure of 1,725 N.23 In
cadaver models, considering both
bundles as a single unit, the ACL is
physiologically lax at 10° to 40° of
flexion and physiologically tense (36
to 56 N) at full extension because
the femoral origin lies posterior to
the femoral center of rotation.11,17

Thus, tensioning at midflexion could
overconstrain the knee in extension,
whereas tensioning at extension
could theoretically result in laxity at
midflexion.

The anatomic origin/insertion of
the ACL is depicted in Figure 2. The
ACL is an anisometric structure. The
ligament is functionally divided into
anteromedial and posterolateral bun-
dles. Tension within the anterome-
dial bundle varies significantly less
than does tension in the posterolat-
eral bundle, reflecting its more iso-
metric origin; but the anteromedial
bundle is slightly more lax in exten-
sion and tense in flexion, with high-
est tension at 60°.22 The posterolat-
eral bundle exhibits notably greater
variation in tension with knee flex-
ion, reflecting its less isometric ori-
gin, with laxity in flexion and ten-
sion in extension greatest at zero
degrees to 15°.22

Single-bundle Repair
Numerous cadaver biomechanical
studies have examined single-bundle
ACLR with various tensioning pro-
tocols. These studies have shown
that tensioning at 30° of flexion
leads to increased risk of flexion con-
tracture,10 supraphysiologic graft
tensions in extension,30 and high tib-

iofemoral contact pressures.11 Several
randomized clinical trials have com-
pared the effects of tensioning re-
gimes on clinical outcomes (Table 2).
These results suggest that, if tension-
ing is performed at 30°, hamstring
tendons may require 80 N of tension
but do not benefit from further ten-
sion.5 BPTB grafts fixed at 30° of
flexion are unlikely to require >20 N
of tension, but if fixed at full exten-
sion, tensioning to 90 N may de-
crease postoperative excess laxity.7,8

Surgeons should be careful about ap-
plying high tension in flexion be-
cause of the risk of flexion contrac-
ture and overconstraint.10 Cadaver
models have also revealed extensive
stress relaxation for hamstring
grafts,30 suggesting that without ex-
tensive pre-tensioning, higher initial
tension must be applied to these
grafts to predictably achieve similar
final laxity to BPTB grafts.

Although unequivocal high-quality
evidence is lacking to make strongly
supported recommendations, we pre-
fer to perform autograft BPTB
ACLR with interference screw aper-
ture fixation, tensioned at full exten-
sion, with a maximal single hand
pull (~99 N).7,8,10,37 Maximum ten-

sioning in full extension or using
submaximal loading at 30° of flex-
ion helps avoid overconstraint.10,30 If
soft-tissue grafts are used, we prefer
to use autograft quadrupled ham-
string tendons24 with suspensory fix-
ation on the femur, and cortical
screw and back-up staple/anchor fix-
ation on the tibia,14,35,36 tensioned at
full extension with a maximum sin-
gle hand pull,5,37 after first pre-
tensioning on a graft preparation
board to minimize stress relax-
ation.30 Tensioning patterns do not
differ for BPTB or soft-tissue al-
lograft.42

Double-bundle Repairs
Notably fewer cadaver studies, and
no clinical studies, have been per-
formed to examine tensioning proto-
cols for double-bundle repairs. Bio-
mechanical evidence suggests that
tensioning bundles separately at their
individual positions of laxity, in
order to maximally constrain the
knee, leads to high individual graft
tensions and poor “reciprocity,”
whereas tensioning both grafts at
20° of flexion may ameliorate these
problems.12,13,43 Three-dimensional
model data based on dual orthogo-

Cadaver specimens demonstrating anterior cruciate ligament (ACL) anatomy.
A, Axial view. The area outlined in black at the top is the posterior cruciate
ligament footprint. The area outlined at the bottom is the ACL footprint.
B, Sagittal view demonstrating the origin and insertion of the ACL.
(Reproduced with permission from Amis AA, Jakob RP: Anterior cruciate
ligament graft positioning, tensioning and twisting. Knee Surg Sports
Traumatol Arthrosc 1998;6[suppl 1]:S2-S12.)

Figure 2
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nal fluoroscopic imaging suggests
that tensioning both bundles at a low
flexion angle may prevent overcon-
straint.44 No clinical studies compar-
ing tensioning protocols have been
performed, but excellent clinical out-
comes have been obtained by ten-
sioning the anteromedial bundle at
60° of flexion and the posterolateral
bundle at zero degrees to 15° of flex-
ion.45 Given their physiologic loads,
tensioning the posterolateral bundle
in extension and the anteromedial
bundle in midflexion replicates phys-
iologic stability patterns while mini-
mizing overconstraint.22,45

Posterior Cruciate Ligament

Native Kinematics
The anatomic origin and insertion of
the PCL are shown in Figures 2 and
3. The PCL is an anisometric struc-
ture. Viewed as a single structure,
the PCL is physiologically lax at full
extension and tense (112 N) at 90°
of flexion because the central femo-
ral footprint lies anterior to the fem-
oral center of rotation. The PCL is
functionally divided into the antero-
lateral and posteromedial bundles.
The anterolateral bundle comprises
65% of the substance of the PCL,

has maximal tension in 90° of flex-
ion, and is the main stabilizer to pos-
terior stress.3,46 The posteromedial
bundle tightens in extension and
early flexion.3 Sectioning studies
demonstrate that the posteromedial
bundle produces small but statisti-
cally significant increases in mean
laxity at zero degrees (+1.06 mm)
and 10° (+0.83 mm) of flexion, but
plays a minimal role at higher flex-
ion angles.46

Single-bundle Repair
Several cadaver biomechanical stud-
ies of single-bundle PCL repairs have

Table 2

Randomized Clinical Trials Comparing the Effect of Tensioning on Outcomes Following Anterior Cruciate
Ligament Reconstruction

Study
No. of

Pts
Minimum
Follow-up

Tensions
Compared

(Degrees of
Flexion)

Graft Type/
Fixation Pre-tensioning Results

van Kampen
et al8

38 1 yr 20 vs 40 N
(20°)

BPTB, interfer-
ence screw

Three cycles at
final tension

No significant difference in
patient-reported Lysholm,
KT-1000,a IKDC, or rates
of contracture between
groups

Kim et al5 48 1 yr 79, 118, and
147 N (30°)

Pentupled ham-
string, staple
fixation

Three cycles at
final tension

No significant difference in
average patient-reported
visual analogue scale of
knee laxity, KT-2000a side-
to-side difference

Yasuda et al41 70 2 yr 20, 40, 80 N
(30°)

Doubled ham-
string, staple
fixation

Flexion cycling ×
1 min at final
tension

Significantly greater KT-
1000a side-to-side differ-
ence in the lower tension
group (2.2 vs 0.6 mm)

Graft augmentation with the
Leeds-Keio prosthesis was
used

Nicholas et al7 49 20 mo 45 vs 90 N
(full

extension)

BPTB, interfer-
ence screw

Ten cycles at final
tension

Significantly greater tibial
displacement and signifi-
cantly more patients with
“abnormal” tibial displace-
ment in the low tension
group

No significant difference in
patient-reported modified
Knee Outcome Survey
scores

BPTB = bone–patellar tendon–bone, IKDC = International Knee Documentation Committee
a KT-1000, KT-2000 arthrometer (Medmetrics, San Diego, CA)
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been performed, many of which were
intended to reconstruct the anterolat-
eral bundle. These studies suggest
that tensioning at 90° of flexion,
with an anterior tibial force of 134
to 156 N, replicates native knee ki-
nematics and hence decreases the
risk of overconstraint and extension
loss.3 When using the transtibial
technique, tensioning in flexion al-
lows force propagation to the intra-
articular portion of the graft around
the so-called killer turn. This turn is
created by the sharp angulation of
the graft exiting the tibial tunnel
headed toward the femoral insertion,
thus creating an area of abrasion.
Tensioning a graft at full extension
may propagate force only to the tun-
nel portion of the graft, resulting in
residual laxity.4,6,47

To date, no clinical trials compar-
ing various tensioning regimes in
PCL reconstruction have been con-
ducted. Given the biomechanical and
clinical evidence, the authors prefer
single-bundle PCL reconstruction
with Achilles tendon allograft, ten-
sioned in 90° of flexion,4,6,47 bone
plug fixation with an interference
screw, and a long biologic interfer-
ence screw and supplementary corti-
cal staple fixation for the soft-tissue
component.14,35,36

Double-bundle Repair
Few cadaver or clinical studies com-
paring tensioning regimes in double-
bundle PCL repairs have been
performed.48 Markolf et al48 demon-
strated that a single anterolateral
graft best reproduced the normal

PCL force profiles; however, laxities
were greater than normal between
zero degrees and 30° of knee flexion.
The addition of a second posterome-
dial graft tensioned to 10 N at 30° of
flexion reduced laxity in early flex-
ion, but it did so at the expense of
higher-than-normal forces in the pos-
teromedial graft.48 In performing a
double-bundle reconstruction, the
surgeon should take care to avoid
overconstraint and decreased knee
motion when adding the posterome-
dial bundle tensioned at a low flex-
ion angle.48

Medial Ligament Complex
The anatomy of the medial aspect of
the knee is depicted in Figure 4. Ma-
jor structures that undergo graft re-
construction to stabilize the medial
side of the knee are the superficial
medial collateral ligament (sMCL)
and the posterior oblique ligament
(POL).

Functional Kinematics
Reconstruction of the sMCL is im-
portant because sectioning studies
demonstrate it to be the primary
static stabilizer of the knee to valgus
stress.20,49 The medial collateral liga-
ment (MCL) was traditionally
thought to be an isometric structure
because its proximal origin lies near
the femoral center of rotation.20 In
vivo,50 ex vivo,9 and modeling51 stud-
ies have confirmed isometry for the
central third of the sMCL. However,
the sMCL/POL complex is relatively
wide, and when one divides these
structures into anterior and posterior
halves, their function is best under-
stood as anisometric. The anterior
portion (sMCL) elongates slightly
and tightens maximally in flexion (1
to 2 mm at 90°); the posterior seg-
ment (POL) elongates and tightens in
extension (2 to 4 mm at zero de-
grees), with an average change of 2.8
mm. Warren et al20 demonstrated
that the sMCL was maximally elon-

Photographs of a sagittally sectioned cadaveric femur with a retained medial
femoral condyle demonstrating posterior cruciate ligament (PCL) anatomy.
A, The arrows indicate tension within the proximodistally oriented
posteromedial bundle of the PCL with the knee in extension. B, With flexion,
the posteromedial bundle, indicated by the arrow, is oriented
anteroposteriorly. (Adapted with permission from Amis AA, Gupte CM, Bull
AMJ, Edwards A: Anatomy of the posterior cruciate ligament and the
meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc
2006;14[3]:257-263.)

Figure 3
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gated at 45° degrees of flexion and
was 1 mm shorter at 30°. The POL is
tighter in extension and has most of
its effect at zero degrees and 30° of
flexion.52 The POL shares only 10%
of valgus load and helps to stabilize
against internal rotation at all flex-
ion angles.53

Single-bundle Reconstruction
The goal of most surgeons when per-
forming single-bundle reconstruction
is an isometric reconstruction of the
sMCL, which requires surgical preci-
sion (Figure 4). In a computer navi-
gation model, Feeley et al54 demon-
strated that 4 mm of deviation in any
direction from the center of the
sMCL footprint causes a significant
decrease in isometry. Most authors
locate an isometric point with a su-
ture looped over Kirschner wires at
the origin and the insertion of the
sMCL, looking for length change of
<3 to 4 mm through a motion cy-
cle.55

In theory, the angle of tension for
an isometric structure such as the
central sMCL should not influence
kinematic outcome. However, most
studies report tensioning of the graft
between 30° and 60°, corresponding
to the ligament’s maximum length
and highest resistance to valgus
force. Subtle variations mentioned in
the literature include tensioning the
MCL at 30° to allow for 1 mm of
creep at 45°,56 tensioning at 30° or
45° with 50 N of force,55 and ten-
sioning with a varus moment.57

For sMCL reconstruction, we pre-
fer an isometric reconstruction at the
center of the femoral and tibial
sMCL footprints, as judged by the
Kirschner wire/suture technique.55

We use an Achilles tendon allograft,
with maximum manual tension at
30°, with a slight varus force.57 The
proximal bone block is fixed with in-
terference screw fixation, and the
graft is stapled distally.14,35,36

Double-bundle Reconstruction
Double-bundle constructs restore
both the sMCL and the POL. Some
authors suggest tensioning the POL
component at 60° of flexion,56

whereas others describe equivalent
results with tensioning at zero de-
grees or 30°.58 Feeley et al54 com-
pared the ability to restore valgus
stability in a cadaver model using
both single- and double-bundle re-
construction techniques. Grafts were
tensioned to 44 N and fixed at 30°
of flexion. Although the single-
bundle reconstruction decreased
opening with valgus force, only
double-bundle repairs were able to
restore the knee’s ability to respond
to both valgus and internal rotation
forces.

In our practice, we prefer a double-
bundle reconstruction with an iso-
metric central sMCL, as described
above, and an anisometric recon-
struction of the POL, with hand ten-
sioning near full extension.58 There is
no evidence to recommend for or
against varus or internal rotation
during the tensioning process.

Lateral Collateral Ligament
and Posterolateral Corner
The anatomy of the PLC is shown in
Figure 5. The major stabilizers of the
PLC that are surgically reconstructed
include the lateral collateral ligament
(LCL), popliteus, and popliteofibular
ligament (Figure 6). There are few
biomechanical and clinical studies
with regard to graft tensioning for
PLC reconstruction.

Functional Kinematics
The LCL, popliteus, and popliteofib-
ular ligament confer stability to the
knee in response to varus, external
rotation, and posterior forces.18,19

With isolated insufficiency of all PLC
structures, the largest increase to ex-
ternal rotation is at 30° of flexion.19

The LCL is an isometric ligament
that is the primary restraint to varus

A, Illustration of the anatomy of the medial collateral ligament (MCL)
complex. B, Illustration of the reconstruction of the MCL complex.
POL = posterior oblique ligament, sMCL = superficial medial collateral
ligament. (Adapted with permission from Coobs BR, Wijdicks CA, Armitage
BM, et al: An in vitro analysis of an anatomical medial knee reconstruction.
Am J Sports Med 2010;38[2]:339-347.)

Figure 4
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force, especially at low flexion an-
gles.19,59 Direct force measurements
of the LCL during an applied varus
moment demonstrate loading re-
sponses at all angles of knee flexion,
with the response at 30° of flexion
significantly higher than that at 90°
of flexion.60 The popliteus is aniso-
metric, made up of tendon and mus-
cle, thus allowing for dynamic con-
trol and balance of tibial neutral
rotation.61 Sectioning of the poplit-
eus alone elucidates its importance in
preventing external rotation at 90°
to 120° of flexion without contribu-
tions to varus rotation or posterior
translation.19,59 The popliteofibular
ligament is anisometric, takes up
maximal tension during an external
rotation force at 60° to 90°, and is
lax with internal tibial rotation.61

Isolated sectioning does not cause in-
creased varus, rotational, or transla-
tional changes.59 However, the popli-
teofibular ligament assists maximally
with varus force at 45° of flexion.62

LCL and PLC Reconstruction
The goal of LCL reconstruction is an
isometric reconstruction. Most au-
thors recommend hand tensioning of
the LCL component at 20° to 30° of
knee flexion, with mild valgus to
prevent lateral gapping.63-65 Tension-
ing for the popliteus and popliteofib-
ular ligament component is more
variable and differs by author and
construct type. Comparisons of
fibula-based popliteal reconstruc-
tions indicate that most were ten-
sioned at 30° of knee flexion.64,66,67

Tibia-based reconstructions of the
popliteus were also tensioned by
hand at 30° to 90° of flexion.63,65,67

Controversy exists regarding the use
of an internal rotation force, with
conflicting data for and against its
use secondary to concerns for over-
constraint.65

There are many different methods
for PLC reconstruction. In general,
these are fibula-based with one or

Photograph of a cadaver specimen (A) and illustration (B) demonstrating the
anatomy of the posterolateral corner. FCL = fibular collateral ligament,
LGT = lateral gastrocnemius tendon, PL = popliteofibular ligament,
PT = popliteus tendon. (Adapted with permission from LaPrade RF, Ly TV,
Wentorf FA, Engebretsen L: The posterolateral attachments of the knee: A
qualitative and quantitative morphologic analysis of the fibular collateral
ligament, popliteus tendon, popliteofibular ligament, and lateral
gastrocnemius tendon. Am J Sports Med 2003;31[6]:854-860.)

Figure 5

PA (A) and lateral (B) illustrations demonstrating reconstruction of the
posterolateral corner. FCL = fibular collateral ligament, PFL = popliteofibular
ligament, PT = popliteus tendon. (Reproduced with permission from
McCarthy M, Camarda L, Wijdicks CA, Johansen S, Engebretsen L, LaPrade
RF: Anatomic posterolateral knee reconstructions require a popliteofibular
ligament reconstruction through a tibial tunnel. Am J Sports Med
2010;38[8]:1674-1681.)

Figure 6
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two femoral tunnels and may include
a tibia-based component.67 Cadaver
studies of fibula-based techniques
have demonstrated no significant dif-
ference between the intact and recon-
structed knee to varus load or to ex-
ternal torque at any flexion angle.62,68

However, two recent biomechanical
studies in which all three functional
components were anatomically re-
constructed separately documented
overconstraint of internal and varus
rotation, respectively.63,64 To date, no
randomized clinical studies have in-
vestigated the different procedures.
However, most clinical case series re-
port reasonable outcomes regardless
of technique used.69 A summary of
pertinent biomechanical studies for
PLC reconstruction is given in Table
3. If reconstructing the LCL alone,
we prefer hand tensioning at 30° of
knee flexion.63-65 For PLC reconstruc-

tion, we prefer a fibula-based tech-
nique with a soft-tissue allograft,
usually semitendinosus.69 We prefer
either a single isometric tunnel on
the femur or a double femoral tunnel
recreating the insertion of both the
popliteus and the LCL.64,66,67 For the
single femoral tunnel, we fix the
graft with a soft-tissue biointerfer-
ence screw under hand tension at
30°, with a slight valgus and internal
rotation force.64,66,67 For the double
femoral tunnel, we differentially ten-
sion and fix the LCL and popliteus
at 30° and 90°, respectively.64,66,67

Summary

Graft tensioning for knee ligament
reconstruction relies on a thorough
appreciation of native knee anatomy
and kinematics. Many other factors

should also be taken into account,
including the mechanical properties
of the selected graft, the fixation
method, and the specific biomechani-
cal goal of the reconstruction. Al-
though extensive biomechanical ca-
daver evidence can guide graft
tensioning, few clinical trials with
patient-oriented functional clinical
outcomes are available to strongly
support one method of tensioning
over another. Future investigators
are encouraged to perform high-
quality trials in order to accurately
direct graft tensioning protocols.
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LCL = lateral collateral ligament, Obl = 40° transfibular tunnels, PF = posterior fibula, PFL = posterior popliteofibular ligament, T = tibia,
TF = transfibular, Val = valgus
a Authors tensioned until forces were within intact specimen
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